"라플라스 변환"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/4181599">푸리에 해석</a>페이지로 이동하였습니다.) |
|||
28번째 줄: | 28번째 줄: | ||
+ | |||
+ | |||
+ | |||
+ | (정리) | ||
<math>f</math>가 유계이고, <math>t\geq 0</math>에서 조각적 연속(piecewise continuous)라 하자. | <math>f</math>가 유계이고, <math>t\geq 0</math>에서 조각적 연속(piecewise continuous)라 하자. | ||
33번째 줄: | 37번째 줄: | ||
<math>\mathfrak{R}(s)\geq 0</math>에서 정의된 함수 <math>F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt</math> 가 <math>\mathfrak{R}(s)\geq 0</math>에서 해석함수로 확장되면, | <math>\mathfrak{R}(s)\geq 0</math>에서 정의된 함수 <math>F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt</math> 가 <math>\mathfrak{R}(s)\geq 0</math>에서 해석함수로 확장되면, | ||
− | <math> | + | <math>\int_0^{\infty} f(t) \,dt</math>이 존재하고, <math>F(0) = \int_0^{\infty} f(t) \,dt</math>가 성립한다. |
39번째 줄: | 43번째 줄: | ||
− | + | <h5 style="margin: 0px; line-height: 2em;">멜린변환과의 관계</h5> | |
− | < | + | * [[푸리에 변환]] 항목 참조<br><math>\hat{f}(s)= \int_{0}^{\infty} f(x) x^{s}\frac{dx}{x}</math><br> |
+ | * 멜린변환에서 <math>x=e^{-t}</math>로 변수를 치환하면, 라플라스 변환을 얻는다<br><math>\int_{0}^{\infty} f(e^{-t}) e^{-st}\,dt</math><br> | ||
− | |||
− | |||
93번째 줄: | 96번째 줄: | ||
* http://en.wikipedia.org/wiki/Laplace_transform | * http://en.wikipedia.org/wiki/Laplace_transform | ||
* [http://en.wikipedia.org/wiki/Laplace%E2%80%93Stieltjes_transform http://en.wikipedia.org/wiki/Laplace–Stieltjes_transform] | * [http://en.wikipedia.org/wiki/Laplace%E2%80%93Stieltjes_transform http://en.wikipedia.org/wiki/Laplace–Stieltjes_transform] | ||
− | * http://en.wikipedia.org/wiki/Moment_(mathematics) | + | * [http://en.wikipedia.org/wiki/Moment_%28mathematics%29 http://en.wikipedia.org/wiki/Moment_(mathematics)] |
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] |
2012년 1월 15일 (일) 10:48 판
이 항목의 스프링노트 원문주소
개요
정의
\(F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt\)
성질
\(\mathcal{L}\left\{\frac{df}{dt}\right\} = s\cdot\mathcal{L} \left\{ f(t) \right\}-f(0)\)
(정리)
\(f\)가 유계이고, \(t\geq 0\)에서 조각적 연속(piecewise continuous)라 하자.
\(\mathfrak{R}(s)\geq 0\)에서 정의된 함수 \(F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt\) 가 \(\mathfrak{R}(s)\geq 0\)에서 해석함수로 확장되면,
\(\int_0^{\infty} f(t) \,dt\)이 존재하고, \(F(0) = \int_0^{\infty} f(t) \,dt\)가 성립한다.
멜린변환과의 관계
- 푸리에 변환 항목 참조
\(\hat{f}(s)= \int_{0}^{\infty} f(x) x^{s}\frac{dx}{x}\) - 멜린변환에서 \(x=e^{-t}\)로 변수를 치환하면, 라플라스 변환을 얻는다
\(\int_{0}^{\infty} f(e^{-t}) e^{-st}\,dt\)
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/라플라스_변환
- http://en.wikipedia.org/wiki/Laplace_transform
- http://en.wikipedia.org/wiki/Laplace–Stieltjes_transform
- http://en.wikipedia.org/wiki/Moment_(mathematics)
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)