"로그 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
29번째 줄: 29번째 줄:
  
 
*  양수 a>0에 대하여, <math>x =a^y</math> 인 실수 x,y (x>0) 에 대하여 다음과 같이 정의<br><math>y = \log_a (x)</math><br>
 
*  양수 a>0에 대하여, <math>x =a^y</math> 인 실수 x,y (x>0) 에 대하여 다음과 같이 정의<br><math>y = \log_a (x)</math><br>
 <br>
+
a를 밑으로 하는 로그<br>
 
*  성질<br><math>\log_a (xy)=\log_a (x)+\log_a (y)</math><br><math>\log_a (1)=0</math><br>
 
*  성질<br><math>\log_a (xy)=\log_a (x)+\log_a (y)</math><br><math>\log_a (1)=0</math><br>
  
102번째 줄: 102번째 줄:
 
 
 
 
  
<h5>메모</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
 +
 
 +
* 1614년 네이피어가 로그를 고안
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=logarithm
 +
 
 +
* [[수학사연표 (역사)|수학사연표]]<br>
  
* http://newdle.edupia.com/xmlView.aspx?xmldid=25448
+
 
 +
 
 +
 
  
 
 
 
 
110번째 줄: 117번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
+
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
  
*  
+
* http://newdle.edupia.com/xmlView.aspx?xmldid=25448
  
* [[수학사연표 (역사)|수학사연표]]<br>  <br>
+
 
 +
 
 +
 
  
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">많이 나오는 질문과 답변</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">많이 나오는 질문과 답변</h5>
126번째 줄: 135번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 고교수학 또는 대학수학</h5>
+
 
 +
 
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
 +
 
 +
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 +
* 발음사전 http://www.forvo.com/search/
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 +
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 +
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 +
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
  
 
 
 
 
132번째 줄: 150번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들</h5>
+
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
  
* [[자연상수 e]]<br>
+
* http://ko.wikipedia.org/wiki/
* [[벤포드의 법칙]]<br>
 
  
 
+
* [http://ko.wikipedia.org/wiki/%EB%A1%9C%EA%B7%B8 http://ko.wikipedia.org/wiki/로그]
 +
* http://en.wikipedia.org/wiki/logarithm
 +
* http://en.wikipedia.org/wiki/Complex_logarithm
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
+
* http://en.wikipedia.org/wiki/
 +
* http://www.wolframalpha.com/input/?i=
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 +
** http://www.research.att.com/~njas/sequences/?q=<br>
  
*  도서내검색<br>
+
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
  
 
 
 
 
152번째 줄: 170번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들</h5>
 +
 
 +
* [[자연상수 e]]<br>
 +
* [[벤포드의 법칙]]<br>
  
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
 
 
 
162번째 줄: 181번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전형태의 자료</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
  
* [http://ko.wikipedia.org/wiki/%EB%A1%9C%EA%B7%B8 http://ko.wikipedia.org/wiki/로그]
+
* 도서내검색<br>
* http://en.wikipedia.org/wiki/logarithm
+
** http://books.google.com/books?q=
* http://en.wikipedia.org/wiki/Complex_logarithm
+
** http://book.daum.net/search/contentSearch.do?query=
* http://www.wolframalpha.com/input/?i=
+
* 도서검색<br>
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 +
** http://book.daum.net/search/mainSearch.do?query=
  
 
 
 
 

2010년 1월 31일 (일) 17:35 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 수의 자릿수 개념의 수학적 일반화
  • 곱셈을 덧셈으로 바꿔주는 성질
  • 지수함수의 역함수이다

 

 

초딩도 이해할 수 있는 로그 입문
  • \(a\)의 (상용) 로그 = \(a\)의 자리수 - 1
    100000 의 로그 = 5
    10000000 의 로그 = 7
  • 좋은점은 곱하기를 더하기로 쉽게 할 수 있다는 것
    가령 (100000 * 10000000) 의 로그 = 5 + 7 = 12
    따라서 100000 * 10000000 = 1000000000000 (0이 12개)

 

 

로그함수
  • 양수 a>0에 대하여, \(x =a^y\) 인 실수 x,y (x>0) 에 대하여 다음과 같이 정의
    \(y = \log_a (x)\)
  • a를 밑으로 하는 로그
  • 성질
    \(\log_a (xy)=\log_a (x)+\log_a (y)\)
    \(\log_a (1)=0\)

 

 

 

넓이와 로그
  • 반비례곡선 아래의 넓이로 \(x>0\)에 대하여 다음과 같이 정의된 함수를 생각하자
     \(L(x)=\int_{1}^{x}\frac{dt}{t}\)
  • 성질
    \(L(1)=0\)
    \(L(xy)=L(x)+L(y)\)

(증명)

실수 \(a,b,\lambda\)가 양수라고 가정.

치환적분을 사용하면, 다음 등식이 성립한다.

(*)  \(\int_{a}^{b}\frac{dt}{t}=\int_{\lambda a}^{\lambda b}\frac{dt}{t}\)

\(L(xy)=\int_{1}^{xy}\frac{dt}{t}=\int_{1}^{x}\frac{dt}{t}+\int_{x}^{xy}\frac{dt}{t}=\int_{1}^{x}\frac{dt}{t}+\int_{1}^{y}\frac{dt}{t}\)

마지막 등식에서 (*)를 사용하였다.

따라서 \(L(xy)=L(x)+L(y)\)가 성립  ■

 

 

자연로그

 

 

 

복소로그함수
  • 복소로그함수는 복소수 \(z = re^{i\theta}\) 에 대하여, 다음과 같이 정의

\(\log(z) = \ln|z| + i\arg(z) = \ln(r) + i\left(\theta + 2 \pi k \right)\). 여기서 \(k\in\mathbb{Z}\).

  • 하나의 복소수에 대하여, 여러개의 값을 가지는 다가함수(multi-valued function)
  • 예를 들자면, \(z=1=1\cdot e^{i\cdot 0}\)에 대해

\(\log(1) = \ln|1| + i\arg(1) = \ln(1) + i\left(0 + 2 \pi k \right) =\cdots, -6\pi i,-4\pi i,-2\pi i,0,2\pi i,4\pi i,6\pi i, \cdots\)

 

 

응용
  • 빛의 밝기 lux
  • 소리의 크기 dB
  • 산성알칼리성 pH
  • 별의 밝기
  • 지진의 세기
  • 엔트로피
  • 그랜드피아노
  • 팬플루트
  • 하프 등에서 그래프

 

 

역사

 

 

 

 

메모

 

 

많이 나오는 질문과 답변

 

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

 

관련된 다른 주제들

 

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그