"르장드르 카이 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
  
 
* [[르장드르 카이 함수]]
 
* [[르장드르 카이 함수]]
9번째 줄: 9번째 줄:
 
 
 
 
  
==개요</h5>
+
==개요==
  
 
 
 
 
15번째 줄: 15번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">정의</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">정의==
  
 
<math>\chi_\nu(z) = \sum_{k=0}^\infty \frac{z^{2k+1}}{(2k+1)^\nu}</math>
 
<math>\chi_\nu(z) = \sum_{k=0}^\infty \frac{z^{2k+1}}{(2k+1)^\nu}</math>
36번째 줄: 36번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">성질</h5>
+
<h5 style="margin: 0px; line-height: 2em;">성질==
  
 
<math>\chi_2(\frac{1-z}{1+z})+\chi_2(z) =\frac{\pi^2}{8}+\frac{1}{2}\log z\log (\frac{1+z}{1-z})</math>
 
<math>\chi_2(\frac{1-z}{1+z})+\chi_2(z) =\frac{\pi^2}{8}+\frac{1}{2}\log z\log (\frac{1+z}{1-z})</math>
56번째 줄: 56번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">dilogarithm 항등식과의 관계</h5>
+
<h5 style="margin: 0px; line-height: 2em;">dilogarithm 항등식과의 관계==
  
 
* [[다이로그 함수(dilogarithm)|dilogarithm 함수]]의 곱셈공식<br><math>\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))</math><br>
 
* [[다이로그 함수(dilogarithm)|dilogarithm 함수]]의 곱셈공식<br><math>\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))</math><br>
66번째 줄: 66번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">special values</h5>
+
<h5 style="margin: 0px; line-height: 2em;">special values==
  
 
<math>\chi_2(i) = iG</math>, <math>G</math>는 [[카탈란 상수]]
 
<math>\chi_2(i) = iG</math>, <math>G</math>는 [[카탈란 상수]]
84번째 줄: 84번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">special value의 계산</h5>
+
<h5 style="margin: 0px; line-height: 2em;">special value의 계산==
  
 
<math>\chi_2(\frac{\sqrt5 -1}{2}) = \frac{\pi^2}{12}-\frac{3}{4}\ln^2(\frac{\sqrt{5}+1}{2})}=\frac{\pi^2}{12}-\frac{3}{4}\ln^2(\frac{\sqrt{5}-1}{2})}</math>
 
<math>\chi_2(\frac{\sqrt5 -1}{2}) = \frac{\pi^2}{12}-\frac{3}{4}\ln^2(\frac{\sqrt{5}+1}{2})}=\frac{\pi^2}{12}-\frac{3}{4}\ln^2(\frac{\sqrt{5}-1}{2})}</math>
128번째 줄: 128번째 줄:
 
 
 
 
  
==재미있는 사실</h5>
+
==재미있는 사실==
  
 
* [[디리클레 베타함수]]<br><math>\beta(s) = \sum_{n=0}^\infty \frac{(-1)^n} {(2n+1)^s} = \frac{1}{\Gamma(s)}\int_0^{\infty}\frac{t^{s-1}e^{-t}}{1 + e^{-2t}}\,dt=\frac{1}{2\Gamma(s)}\int_{0}^{\infty}\frac{1}{\cosh t}t^s \frac{\,dt}{t}</math><br>
 
* [[디리클레 베타함수]]<br><math>\beta(s) = \sum_{n=0}^\infty \frac{(-1)^n} {(2n+1)^s} = \frac{1}{\Gamma(s)}\int_0^{\infty}\frac{t^{s-1}e^{-t}}{1 + e^{-2t}}\,dt=\frac{1}{2\Gamma(s)}\int_{0}^{\infty}\frac{1}{\cosh t}t^s \frac{\,dt}{t}</math><br>
195번째 줄: 195번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
+
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모==
  
 
<math>\int_0^{\pi}\frac{x\sin x}{1+\cos^2 x}dx=\frac{\pi^2}{4}</math>
 
<math>\int_0^{\pi}\frac{x\sin x}{1+\cos^2 x}dx=\frac{\pi^2}{4}</math>
207번째 줄: 207번째 줄:
 
 
 
 
  
==역사</h5>
+
==역사==
  
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
215번째 줄: 215번째 줄:
 
 
 
 
  
==관련된 다른 주제들</h5>
+
==관련된 다른 주제들==
  
 
* [[다이로그 함수(dilogarithm)|Dilogarithm]]
 
* [[다이로그 함수(dilogarithm)|Dilogarithm]]
226번째 줄: 226번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
235번째 줄: 235번째 줄:
 
 
 
 
  
==사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
248번째 줄: 248번째 줄:
 
 
 
 
  
==관련논문</h5>
+
==관련논문==
  
 
* [http://www.mathnet.or.kr/mathnet/kms_content.php?no=378689 Some Identities Involving the Legendre's Chi-Function]<br>
 
* [http://www.mathnet.or.kr/mathnet/kms_content.php?no=378689 Some Identities Involving the Legendre's Chi-Function]<br>
260번째 줄: 260번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
274번째 줄: 274번째 줄:
 
 
 
 
  
==관련기사</h5>
+
==관련기사==
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
285번째 줄: 285번째 줄:
 
 
 
 
  
==블로그</h5>
+
==블로그==
  
 
* '''[오늘의계산080810]'''[http://sos440.tistory.com/83 오늘의 계산 12]<br>
 
* '''[오늘의계산080810]'''[http://sos440.tistory.com/83 오늘의 계산 12]<br>

2012년 11월 1일 (목) 12:48 판

이 항목의 스프링노트 원문주소==      

개요

 

 

정의== \(\chi_\nu(z) = \sum_{k=0}^\infty \frac{z^{2k+1}}{(2k+1)^\nu}\) \(\chi_\nu(z) = \frac{1}{2}\left[\operatorname{Li}_\nu(z) - \operatorname{Li}_\nu(-z)\right]\) \(\chi_2(z) =\frac{1}{2}\int_0^z{{\log (\frac{1+t}{1-t})\frac{dt}{t}\) (증명) \(\chi_2(z) = \frac{1}{2}\left[\operatorname{Li}_2(z) - \operatorname{Li}_2(-z)\right]=-\frac{1}{2}\int_0^z{{\log (1-t)}\over t} dt +\frac{1}{2}\int_0^z{{\log (1+t)}\over t} dt =\frac{1}{2}\int_0^z{{\log (\frac{1+t}{1-t})\frac{dt}{t}\)  ■      
성질== \(\chi_2(\frac{1-z}{1+z})+\chi_2(z) =\frac{\pi^2}{8}+\frac{1}{2}\log z\log (\frac{1+z}{1-z})\) (증명) \(\frac{d}{dz}[\chi_2(\frac{1-z}{1+z})] = \frac{1}{2}{{\log (\frac{1+\frac{1-z}{1+z}}{1-\frac{1-z}{1+z}})(\frac{1+z}{1-z})(\frac{1-z}{1+z})'=\frac{\log z}{1-z^2}\) 양변을 적분하면, 즉 \(\int_0^z \cdots {dz}\) 을 씌우면, \(\chi_2(\frac{1-z}{1+z})-\chi_2(1) =\int_0^z \frac{\log z}{1-z^2}\,dz=\frac{1}{2}\log z \log (\frac{1-z}{1+z})-\frac{1}{2}\int_0^z \log (\frac{1+z}{1-z})\frac{dz}{z}\) \(\chi_2(z) =\frac{1}{2}\int_0^z{{\log (\frac{1+t}{1-t})\frac{dt}{t}\)와 \(\chi_2(1) = \frac{\pi^2}{8}\)를 이용하면,  \(\chi_2(\frac{1-z}{1+z})+\chi_2(z) =\frac{\pi^2}{8}+\frac{1}{2}\log z\log (\frac{1+z}{1-z})\) 를 얻는다. ♥    
dilogarithm 항등식과의 관계==
  • dilogarithm 함수의 곱셈공식
    \(\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))\)
  • \(\nu=2\)인 경우의 르장드르 카이 함수는 다음과 같이 쓸 수 있다
    \(\chi_\nu(z) = \frac{1}{2}\left[\operatorname{Li}_\nu(z) - \operatorname{Li}_\nu(-z)\right]=\operatorname{Li}_2(z) - \frac{1}{4}\operatorname{Li}_2(z^2)\)
  • special value의 계산으로부터 dilogarithm 항등식 을 얻을 수 있다
   
special values== \(\chi_2(i) = iG\), \(G\)는 카탈란 상수 \(\chi_2(\sqrt2 -1) = \frac{\pi^2}{16}-\frac{\ln^2(\sqrt{2}+1)}{4}\) \(\chi_2(\frac{\sqrt5 -1}{2}) = \frac{\pi^2}{12}-\frac{3}{4}\ln^2(\frac{\sqrt{5}+1}{2})}\) \(\chi_2(\sqrt5 -2}) = \frac{\pi^2}{24}-\frac{3}{4}\ln^2(\frac{\sqrt{5}+1}{2})}\) \(\chi_2(-1) = -\frac{\pi^2}{8}\) \(\chi_2(1) = \frac{\pi^2}{8}\)    
special value의 계산== \(\chi_2(\frac{\sqrt5 -1}{2}) = \frac{\pi^2}{12}-\frac{3}{4}\ln^2(\frac{\sqrt{5}+1}{2})}=\frac{\pi^2}{12}-\frac{3}{4}\ln^2(\frac{\sqrt{5}-1}{2})}\)
  • Dilogarithm 함수에서 얻어진 다음 두 결과를 이용
    \(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)
\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

\(\chi_2(\sqrt2 -1) = \frac{\pi^2}{16}-\frac{\ln^2(\sqrt{2}+1)}{4}\)

위에서 증명한 다음 성질을 이용

\(\chi_2(\frac{1-z}{1+z})+\chi_2(z) =\frac{\pi^2}{8}+\frac{1}{2}\log z\log (\frac{1+z}{1-z})\)

\(z=\sqrt2 -1\) 로 두면, 원하는 결과를 얻는다. 

(* 또는 Dilogarithm 함수에서 얻은 다음 결과를 이용 

\(2[\mbox{Li}_2(1-\sqrt 2)-\mbox{Li}_2(\sqrt2 -1)]=\ln^2(\sqrt{2}-1)-\frac{\pi^2}{4}=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\) *)


\(\chi_2(\sqrt5 -2}) = \frac{\pi^2}{24}-\frac{3}{4}\ln^2(\frac{\sqrt{5}+1}{2})}\)

위에서 증명한 다음 성질을 이용

\(\chi_2(\frac{1-z}{1+z})+\chi_2(z) =\frac{\pi^2}{8}+\frac{1}{2}\log z\log (\frac{1+z}{1-z})\)

\(z=\frac{\sqrt5 -1}{2}\) 로 두면, \(\frac{1-z}{1+z}=z^3=\sqrt{5}-2\), \(z^{-3}=\sqrt{5}+2\)

\(\chi_2(\sqrt{5}-2)+\chi_2(\frac{\sqrt5 -1}{2}) =\frac{\pi^2}{8}+\frac{1}{2}\log (\frac{\sqrt5 -1}{2})\log (\sqrt{5}+2)\)

앞에서 얻은 \(\chi_2(\frac{\sqrt5 -1}{2}) = \frac{\pi^2}{12}-\frac{3}{4}\ln^2(\frac{\sqrt{5}-1}{2})}\)를  이용하자. 

\(\chi_2(\sqrt{5}-2)=\frac{\pi^2}{8}+\frac{1}{2}\log (\frac{\sqrt5 -1}{2})\log (\sqrt{5}+2)-\frac{\pi^2}{12}+\frac{3}{4}\log^2(\frac{\sqrt{5}-1}{2})}\)

\(=\frac{\pi^2}{24}-\frac{3}{2}\log^2(\frac{\sqrt5 -1}{2})+\frac{3}{4}\log^2(\frac{\sqrt{5}-1}{2})}=\frac{\pi^2}{24}-\frac{3}{4}\log^2(\frac{\sqrt{5}-1}{2})}\)

\(=\frac{\pi^2}{24}-\frac{3}{4}\log^2(\frac{\sqrt{5}+1}{2})}\)

 

 

재미있는 사실

  • 디리클레 베타함수
    \(\beta(s) = \sum_{n=0}^\infty \frac{(-1)^n} {(2n+1)^s} = \frac{1}{\Gamma(s)}\int_0^{\infty}\frac{t^{s-1}e^{-t}}{1 + e^{-2t}}\,dt=\frac{1}{2\Gamma(s)}\int_{0}^{\infty}\frac{1}{\cosh t}t^s \frac{\,dt}{t}\)
  • \(\int_0^{\pi}\frac{x\cos x}{1+\sin^2 x}dx=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)

 

 

\(2[\mbox{Li}_2(1-\sqrt 2)-\mbox{Li}_2(\sqrt2 -1)]=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)

이 결과는 다음 정적분과 같음.

\(\int_0^{\pi}\frac{x\cos x}{1+\sin^2 x}dx=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)

 

(증명)

[오늘의계산080810]

\(\mbox{Li}_2(1-\sqrt 2)=-\mbox{Li}_2(1-\frac{1}{\sqrt 2})-\frac{1}{2} \ln^2(\sqrt{2})\)

\(=-[-\mbox{Li}_2(\frac{1}{\sqrt 2})+\frac{\pi^2}{6}-\ln\frac{1}{\sqrt{2}}\ln(1-\frac{1}{\sqrt{2}})]-\frac{1}{8} \ln^2 2\)

\(=\mbox{Li}_2(\frac{1}{\sqrt 2})-\frac{\pi^2}{6}+\ln\frac{1}{\sqrt{2}}\ln(1-\frac{1}{\sqrt{2}})-\frac{1}{8} \ln^2 2\)

\(=\mbox{Li}_2(\frac{1}{\sqrt 2})-\frac{\pi^2}{6}-\frac{1}{2}\ln{2}\ln({\sqrt{2}}-1)+\frac{1}{8} \ln^2 2\)

 

 

\(\mbox{Li}_2(\sqrt 2-1)=\mbox{Li}_2(1-(2-\sqrt 2))\)

\(=-\mbox{Li}_2(1-\frac{1}{2-\sqrt 2})-\frac{1}{2}\ln^2(2-\sqrt{2})\)

\(=-\mbox{Li}_2(1-\frac{2+\sqrt{2}}{2})-\frac{1}{2}\ln^2(2-\sqrt{2})\)

\(=-\mbox{Li}_2(-\frac{1}{\sqrt{2}})-\frac{1}{2}(\frac{1}{2}\ln {2} + \ln(\sqrt{2}-1}))^2\)

\(=-\mbox{Li}_2(-\frac{1}{\sqrt{2}})-\frac{1}{8}\ln^2 {2}-\frac{1}{2}\ln 2\ln(\sqrt{2}-1})-\frac{1}{2}\ln^2(\sqrt{2}-1})\)

 

 

\(\mbox{Li}_2(1-\sqrt 2)-\mbox{Li}_2(\sqrt2 -1)=\)

\(=\mbox{Li}_2(\frac{1}{\sqrt 2})-\frac{\pi^2}{6}-\frac{1}{2}\ln{2}\ln({\sqrt{2}}-1)+\frac{1}{8} \ln^2 2-(-\mbox{Li}_2(-\frac{1}{\sqrt{2}})-\frac{1}{8}\ln^2 {2}-\frac{1}{2}\ln 2\ln(\sqrt{2}-1})-\frac{1}{2}\ln^2(\sqrt{2}-1}))\)

\(=\mbox{Li}_2(\frac{1}{\sqrt 2})+\mbox{Li}_2(-\frac{1}{\sqrt{2}})-\frac{\pi^2}{6}+\frac{1}{4} \ln^2 2+\frac{1}{2}\ln^2(\sqrt{2}-1})\)

\(=\frac{1}{2}\mbox{Li}_2\frac{1}{2}-\frac{\pi^2}{6}+\frac{1}{4} \ln^2 2 +\frac{1}{2}\ln^2(\sqrt{2}-1})\)

\(=\frac{1}{2}(\frac{\pi^2}{12}-\frac{1}{2}\ln^2 2)-\frac{\pi^2}{6}+\frac{1}{4} \ln^2 2+\frac{1}{2}\ln^2(\sqrt{2}-1})\)

\(=-\frac{\pi^2}{8}+\frac{1}{2}\ln^2(\sqrt{2}-1})\)

 

따라서,

\(2[\mbox{Li}_2(1-\sqrt 2)-\mbox{Li}_2(\sqrt2 -1)]=\ln^2(\sqrt{2}-1)-\frac{\pi^2}{4}=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)

 

메모== \(\int_0^{\pi}\frac{x\sin x}{1+\cos^2 x}dx=\frac{\pi^2}{4}\) \(\int_0^{\pi}\frac{x\cos x}{1+\sin^2 x}dx=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)
  •  
   

역사

 

 

관련된 다른 주제들

 

 

수학용어번역==  

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서==    

관련기사

 

 

블로그