르장드르 카이 함수
개요
정의
\(\chi_\nu(z) = \sum_{k=0}^\infty \frac{z^{2k+1}}{(2k+1)^\nu}\)
\(\chi_\nu(z) = \frac{1}{2}\left[\operatorname{Li}_\nu(z) - \operatorname{Li}_\nu(-z)\right]\)
- Dilogarithm 함수
- polylogarithm 함수
\(\chi_2(z) =\frac{1}{2}\int_0^z \log (\frac{1+t}{1-t})\frac{dt}{t}\)
(증명)
\(\chi_2(z) = \frac{1}{2}\left[\operatorname{Li}_2(z) - \operatorname{Li}_2(-z)\right]=-\frac{1}{2}\int_0^z \frac{\log (1-t)}{t} dt +\frac{1}{2}\int_0^z \frac{\log (1+t)}{t} dt =\frac{1}{2}\int_0^z \log (\frac{1+t}{1-t})\frac{dt}{t}\) ■
성질
\(\chi_2(\frac{1-z}{1+z})+\chi_2(z) =\frac{\pi^2}{8}+\frac{1}{2}\log z\log (\frac{1+z}{1-z})\)
(증명)
\(\frac{d}{dz}[\chi_2(\frac{1-z}{1+z})] = \frac{1}{2}{{\log (\frac{1+\frac{1-z}{1+z}}{1-\frac{1-z}{1+z}})(\frac{1+z}{1-z})(\frac{1-z}{1+z})'=\frac{\log z}{1-z^2}\)
양변을 적분하면, 즉 \(\int_0^z \cdots {dz}\) 을 씌우면,
\(\chi_2(\frac{1-z}{1+z})-\chi_2(1) =\int_0^z \frac{\log z}{1-z^2}\,dz=\frac{1}{2}\log z \log (\frac{1-z}{1+z})-\frac{1}{2}\int_0^z \log (\frac{1+z}{1-z})\frac{dz}{z}\)
\(\chi_2(z) =\frac{1}{2}\int_0^z{{\log (\frac{1+t}{1-t})\frac{dt}{t}\)와 \(\chi_2(1) = \frac{\pi^2}{8}\)를 이용하면,
\(\chi_2(\frac{1-z}{1+z})+\chi_2(z) =\frac{\pi^2}{8}+\frac{1}{2}\log z\log (\frac{1+z}{1-z})\) 를 얻는다. ♥
dilogarithm 항등식과의 관계
- dilogarithm 함수의 곱셈공식\[\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))\]
- \(\nu=2\)인 경우의 르장드르 카이 함수는 다음과 같이 쓸 수 있다\[\chi_\nu(z) = \frac{1}{2}\left[\operatorname{Li}_\nu(z) - \operatorname{Li}_\nu(-z)\right]=\operatorname{Li}_2(z) - \frac{1}{4}\operatorname{Li}_2(z^2)\]
- special value의 계산으로부터 dilogarithm 항등식 을 얻을 수 있다
special values
\(\chi_2(i) = iG\), \(G\)는 카탈란 상수
\(\chi_2(\sqrt2 -1) = \frac{\pi^2}{16}-\frac{\ln^2(\sqrt{2}+1)}{4}\)
\(\chi_2(\frac{\sqrt5 -1}{2}) = \frac{\pi^2}{12}-\frac{3}{4}\ln^2(\frac{\sqrt{5}+1}{2})}\)
\(\chi_2(\sqrt5 -2}) = \frac{\pi^2}{24}-\frac{3}{4}\ln^2(\frac{\sqrt{5}+1}{2})}\)
\(\chi_2(-1) = -\frac{\pi^2}{8}\)
\(\chi_2(1) = \frac{\pi^2}{8}\)
special value의 계산
\(\chi_2(\frac{\sqrt5 -1}{2}) = \frac{\pi^2}{12}-\frac{3}{4}\ln^2(\frac{\sqrt{5}+1}{2})}=\frac{\pi^2}{12}-\frac{3}{4}\ln^2(\frac{\sqrt{5}-1}{2})}\)
- Dilogarithm 함수에서 얻어진 다음 두 결과를 이용\[\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\]
\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)
\(\chi_2(\sqrt2 -1) = \frac{\pi^2}{16}-\frac{\ln^2(\sqrt{2}+1)}{4}\)
위에서 증명한 다음 성질을 이용
\(\chi_2(\frac{1-z}{1+z})+\chi_2(z) =\frac{\pi^2}{8}+\frac{1}{2}\log z\log (\frac{1+z}{1-z})\)
\(z=\sqrt2 -1\) 로 두면, 원하는 결과를 얻는다.
(* 또는 Dilogarithm 함수에서 얻은 다음 결과를 이용
\(2[\mbox{Li}_2(1-\sqrt 2)-\mbox{Li}_2(\sqrt2 -1)]=\ln^2(\sqrt{2}-1)-\frac{\pi^2}{4}=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\) *)
\(\chi_2(\sqrt5 -2}) = \frac{\pi^2}{24}-\frac{3}{4}\ln^2(\frac{\sqrt{5}+1}{2})}\)
위에서 증명한 다음 성질을 이용
\(\chi_2(\frac{1-z}{1+z})+\chi_2(z) =\frac{\pi^2}{8}+\frac{1}{2}\log z\log (\frac{1+z}{1-z})\)
\(z=\frac{\sqrt5 -1}{2}\) 로 두면, \(\frac{1-z}{1+z}=z^3=\sqrt{5}-2\), \(z^{-3}=\sqrt{5}+2\)
\(\chi_2(\sqrt{5}-2)+\chi_2(\frac{\sqrt5 -1}{2}) =\frac{\pi^2}{8}+\frac{1}{2}\log (\frac{\sqrt5 -1}{2})\log (\sqrt{5}+2)\)
앞에서 얻은 \(\chi_2(\frac{\sqrt5 -1}{2}) = \frac{\pi^2}{12}-\frac{3}{4}\ln^2(\frac{\sqrt{5}-1}{2})}\)를 이용하자.
\(\chi_2(\sqrt{5}-2)=\frac{\pi^2}{8}+\frac{1}{2}\log (\frac{\sqrt5 -1}{2})\log (\sqrt{5}+2)-\frac{\pi^2}{12}+\frac{3}{4}\log^2(\frac{\sqrt{5}-1}{2})}\)
\(=\frac{\pi^2}{24}-\frac{3}{2}\log^2(\frac{\sqrt5 -1}{2})+\frac{3}{4}\log^2(\frac{\sqrt{5}-1}{2})}=\frac{\pi^2}{24}-\frac{3}{4}\log^2(\frac{\sqrt{5}-1}{2})}\)
\(=\frac{\pi^2}{24}-\frac{3}{4}\log^2(\frac{\sqrt{5}+1}{2})}\)
재미있는 사실
- 디리클레 베타함수\[\beta(s) = \sum_{n=0}^\infty \frac{(-1)^n} {(2n+1)^s} = \frac{1}{\Gamma(s)}\int_0^{\infty}\frac{t^{s-1}e^{-t}}{1 + e^{-2t}}\,dt=\frac{1}{2\Gamma(s)}\int_{0}^{\infty}\frac{1}{\cosh t}t^s \frac{\,dt}{t}\]
- \(\int_0^{\pi}\frac{x\cos x}{1+\sin^2 x}dx=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)
\(2[\mbox{Li}_2(1-\sqrt 2)-\mbox{Li}_2(\sqrt2 -1)]=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)
이 결과는 다음 정적분과 같음.
\(\int_0^{\pi}\frac{x\cos x}{1+\sin^2 x}dx=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)
(증명)
[오늘의계산080810]
\(\mbox{Li}_2(1-\sqrt 2)=-\mbox{Li}_2(1-\frac{1}{\sqrt 2})-\frac{1}{2} \ln^2(\sqrt{2})\)
\(=-[-\mbox{Li}_2(\frac{1}{\sqrt 2})+\frac{\pi^2}{6}-\ln\frac{1}{\sqrt{2}}\ln(1-\frac{1}{\sqrt{2}})]-\frac{1}{8} \ln^2 2\)
\(=\mbox{Li}_2(\frac{1}{\sqrt 2})-\frac{\pi^2}{6}+\ln\frac{1}{\sqrt{2}}\ln(1-\frac{1}{\sqrt{2}})-\frac{1}{8} \ln^2 2\)
\(=\mbox{Li}_2(\frac{1}{\sqrt 2})-\frac{\pi^2}{6}-\frac{1}{2}\ln{2}\ln({\sqrt{2}}-1)+\frac{1}{8} \ln^2 2\)
\(\mbox{Li}_2(\sqrt 2-1)=\mbox{Li}_2(1-(2-\sqrt 2))\)
\(=-\mbox{Li}_2(1-\frac{1}{2-\sqrt 2})-\frac{1}{2}\ln^2(2-\sqrt{2})\)
\(=-\mbox{Li}_2(1-\frac{2+\sqrt{2}}{2})-\frac{1}{2}\ln^2(2-\sqrt{2})\)
\(=-\mbox{Li}_2(-\frac{1}{\sqrt{2}})-\frac{1}{2}(\frac{1}{2}\ln {2} + \ln(\sqrt{2}-1}))^2\)
\(=-\mbox{Li}_2(-\frac{1}{\sqrt{2}})-\frac{1}{8}\ln^2 {2}-\frac{1}{2}\ln 2\ln(\sqrt{2}-1})-\frac{1}{2}\ln^2(\sqrt{2}-1})\)
\(\mbox{Li}_2(1-\sqrt 2)-\mbox{Li}_2(\sqrt2 -1)=\)
\(=\mbox{Li}_2(\frac{1}{\sqrt 2})-\frac{\pi^2}{6}-\frac{1}{2}\ln{2}\ln({\sqrt{2}}-1)+\frac{1}{8} \ln^2 2-(-\mbox{Li}_2(-\frac{1}{\sqrt{2}})-\frac{1}{8}\ln^2 {2}-\frac{1}{2}\ln 2\ln(\sqrt{2}-1})-\frac{1}{2}\ln^2(\sqrt{2}-1}))\)
\(=\mbox{Li}_2(\frac{1}{\sqrt 2})+\mbox{Li}_2(-\frac{1}{\sqrt{2}})-\frac{\pi^2}{6}+\frac{1}{4} \ln^2 2+\frac{1}{2}\ln^2(\sqrt{2}-1})\)
\(=\frac{1}{2}\mbox{Li}_2\frac{1}{2}-\frac{\pi^2}{6}+\frac{1}{4} \ln^2 2 +\frac{1}{2}\ln^2(\sqrt{2}-1})\)
\(=\frac{1}{2}(\frac{\pi^2}{12}-\frac{1}{2}\ln^2 2)-\frac{\pi^2}{6}+\frac{1}{4} \ln^2 2+\frac{1}{2}\ln^2(\sqrt{2}-1})\)
\(=-\frac{\pi^2}{8}+\frac{1}{2}\ln^2(\sqrt{2}-1})\)
따라서,
\(2[\mbox{Li}_2(1-\sqrt 2)-\mbox{Li}_2(\sqrt2 -1)]=\ln^2(\sqrt{2}-1)-\frac{\pi^2}{4}=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)
메모
\(\int_0^{\pi}\frac{x\sin x}{1+\cos^2 x}dx=\frac{\pi^2}{4}\)
\(\int_0^{\pi}\frac{x\cos x}{1+\sin^2 x}dx=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)
역사
관련된 항목들
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Legendre_chi_function
- http://en.wikipedia.org/wiki/
- http://mathworld.wolfram.com/LegendresChi-Function.html
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
관련논문
- Some Identities Involving the Legendre's Chi-Function
- Junesang Choi, Communications of the Korean Mathematical Society ( Vol.22 NO.2 / 2007 )
- Values of the Legendre chi and Hurwitz zeta functions at rational arguments
- Djurdje Cvijović, Jacek Klinowski, Mathematics of Computation archive Volume 68 , Issue 228 (October 1999)
- http://www.jstor.org/action/doBasicSearch?Query=
블로그
- [오늘의계산080810]오늘의 계산 12
- 수학 잡담/오늘의 계산, 2008/08/10
메타데이터
위키데이터
- ID : Q1452853
Spacy 패턴 목록
- [{'LOWER': 'legendre'}, {'LOWER': 'chi'}, {'LEMMA': 'function'}]