미분형식을 통한 곡면론

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 2일 (금) 07:29 판 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query=” 문자열을 “” 문자열로)
둘러보기로 가기 검색하러 가기

이 항목의 수학노트 원문주소

 

 

개요

  • 미분기하학
  • 메트릭 텐서
  • (orthonomal) 프레임 \(\{e_1,e_2\}\)
  • 코프레임 \(\{\omega_1,\omega_2\}\)
  • 접속형식(1-form)
    \(\omega_{12}=-\omega_{21}\)
  • 곡률형식(2-form)
    \(d\omega_{12}\)
  • 카르탄 구조 방정식
    \(d\omega_{1}=\omega_{12}\wedge \omega_{2}\)
    \(d\omega_{2}=-\omega_{12}\wedge \omega_{1}\)
    \(d\omega_{12}(p)=-K(p)(\omega_{1}\wedge \omega_{2})(p)\)
  • 곡률형식에서의 \(K(p)\) 를 가우스곡률이라 부른다

 

 

  • \(e_1=f_{u}/\sqrt{E}\), \(e_2=f_{v}/\sqrt{G}\) 를 orthonormal frame 이라 하자
  • \(\omega_1=\sqrt{E}du\), \(\omega_2=\sqrt{G}dv\)
  • \(\omega_{12}=-\frac{(\sqrt{E})_{v}}{\sqrt{G}}du+\frac{(\sqrt{G})_{u}}{\sqrt{E}}dv\)

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문