베버(Weber) 모듈라 함수
http://bomber0.myid.net/ (토론)님의 2009년 12월 4일 (금) 21:28 판
이 항목의 스프링노트 원문주소
개요
- 베버의 class invariant 라는 이름으로 잘 알려져 있으며, 베버는 Schläfli 함수로 불렀음
- class field theory에서 중요한 역할
- 정의
\(\mathfrak{f}(\tau)=\frac{e^{-\frac{\pi i}{24}}\eta(\frac{\tau+1}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})\)
\(\mathfrak{f}_1(\tau)=\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1-q^{n-\frac{1}{2}})\)
\(\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})\)
여기서 \(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\) 는 데데킨트 에타함수
항등식
- \(\mathfrak{f}_1(2\tau)\mathfrak{f}_2(\tau)=\sqrt2\)
- \(\mathfrak{f}(\tau)\mathfrak{f}_1(\tau)\mathfrak{f}_2(\tau)=\sqrt2\)
- \(\mathfrak{f}(\tau)^8=\mathfrak{f}_1(\tau)^8+\mathfrak{f}_2(\tau)^8\)
모듈라 성질
- \(\mathfrak{f}(\tau+1)=\zeta_{48}^{-1}\mathfrak{f}_1(\tau)\)
- \(\mathfrak{f}_1(\tau+1)=\zeta_{48}^{-1}\mathfrak{f}(\tau)\)
- \(\mathfrak{f}_2(\tau+1)=\zeta_{24}\mathfrak{f}_2(\tau)\)
- \(\mathfrak{f}(-\frac{1}{\tau})=\mathfrak{f}(\tau)\)
- \(\mathfrak{f}_1(-\frac{1}{\tau})=\mathfrak{f}_2(\tau)\)
- \(\mathfrak{f}_2(-\frac{1}{\tau})=\mathfrak{f}_1(\tau)\)
j-invariant 와의 관계
- \(\mathfrak{f}(\tau)^{24}\), \(-\mathfrak{f}_1(\tau)^{24}\), \(-\mathfrak{f}_2(\tau)^{24}\)는 \((x-16)^3-j(\tau)x=0\) 의 근이다
special values
q-초기하급수와의 관계
- q-초기하급수(q-hypergeometric series) 의 공식
\(\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)
\(z=q^{1/2}\) 인 경우
\(\prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} (q^{1/2})^n=\sum_{n\geq 0}\frac{q^{n^2/2}}{(1-q)(1-q^2)\cdots(1-q^n)} \)
\(\prod_{n=1}^{\infty} (1+q^{2n-1})=\sum_{n\geq 0}\frac{q^{n^2}}{(1-q^2)(1-q^4)\cdots(1-q^{2n})} \)
\(z=q\) 인 경우
\(\prod_{n=1}^{\infty} (1+q^{n})=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}q^n=\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\) - 위의 결과로부터 다음을 얻을 수 있다
\(\mathfrak{f}(2\tau)=q^{-1/24}\prod_{n=1}^{\infty} (1+q^{2n-1})=q^{-1/24}\sum_{n\geq 0}\frac{q^{n^2}}{(1-q^2)(1-q^4)\cdots(1-q^{2n})}\)
\(\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=\sqrt{2}q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Weber's class invariants revisited
- [1]Reinhard Schertz, Journal de théorie des nombres de Bordeaux, 14 no. 1 (2002), p. 325-343
- On The Singular Values Of Weber Modular Functions
- Noriko Yui , Don Zagier, Math. Comp. 66 (1997), 1645-1662
- http://www.jstor.org/action/doBasicSearch?Query=
관련도서 및 추천도서
-
- 베버의 책
- Elliptische functionen und algebraische zahlen (1891). available in print
- Lehrbuch der Algebra (Volume 1) (1898). available in print
- Lehrbuch der Algebra (Volume 2) (1898). available in print
- Lehrbuch der Algebra (Volume 3) (1898). available in print
- Theorie der Abelschen Functionen vom Geschlecht 3 (1876). available in print
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)