카탈란 상수
http://bomber0.myid.net/ (토론)님의 2010년 4월 1일 (목) 17:27 판
이 항목의 스프링노트 원문주소
개요
- 정의
\(G = \beta(2) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^2} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots \!=0.915965594\cdots\)
여기서 \(\beta(s)\) 는 디리클레 베타함수 - 많은 정적분에 등장함
적분표현
- 로바체프스키와 클라우센 함수
\(\operatorname{Cl}_2(\theta)=-\int_0^{\theta} \ln |2\sin \frac{t}{2}| \,dt=\sum_{n=1}^{\infty}\frac{\sin (n\theta)}{n^2}\)
\(\operatorname{Cl}_2(\frac{\pi}{2})=G\) - dilogarithm 함수
\(G = -\int_{0}^{1} \frac{\ln t}{1 + t^2} \,dt\)
\(G = \int_0^1 \int_0^1 \frac{1}{1+x^2 y^2} \,dx\, dy\)
\(G = \int_{0}^{\pi/4} \frac{t}{\sin t \cos t} \,dt\)
라이프니츠 급수와의 비교
- 라이프니츠 급수
\(1 \,-\, \frac{1}{3} \,+\, \frac{1}{5} \,-\, \frac{1}{7} \,+\, \frac{1}{9} \,-\, \cdots \;=\; \frac{\pi}{4}\)
오일러-맥클로린 공식을 통한 계산
- 오일러-맥클로린 공식을 적용하기 위해 카탈란 상수를 다음과 같이 쓰자
\(G = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^2} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots = (\frac{1}{1^2} - \frac{1}{3^2}) + (\frac{1}{5^2} - \frac{1}{7^2}) + \cdots =8\sum_{k=0}^{\infty} \frac{2k+1}{(4k+1)^2(4k+3)^2}\)
재미있는 사실
역사
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Catalan's_constant
- http://en.wikipedia.org/wiki/Dirichlet_beta_function
- http://www.wolframalpha.com/input/?i=Catalan+constant
- NIST Digital Library of Mathematical Functions
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)