다변수 함수의 임계점

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 10월 31일 (수) 12:25 판 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기
이 항목의 수학노트 원문주소

 

 

==개요

 

 

==예

\(u, v, w \in (0,1)\) 에서, \( $\varphi(u, v, w) = \frac{u(1-u)v(1-v)w(1-w)}{1-(1-uv)w}\) 의 임계점

\(u= -1+\sqrt{2} , v= -1+\sqrt{2}, w= \frac{1}{\sqrt{2}}\) 에서 얻어진다.

최대값은 \((\sqrt{2}-1)^4\)

 

 

==역사

 

 

 

==메모

 

 

 

==관련된 항목들

 

 

수학용어번역

 

 

==매스매티카 파일 및 계산 리소스

 

 

==사전 형태의 자료

 

 

==리뷰논문, 에세이, 강의노트

 

 

 

==관련논문

 

 

==관련도서