푸리에 변환
http://bomber0.myid.net/ (토론)님의 2010년 1월 24일 (일) 12:49 판
이 항목의 스프링노트 원문주소
간단한 소개
- 아벨군 \(G\)과 불변측도, 캐릭터 \(\chi:G\to \mathbb{C}\)그 위에 정의된 함수 \(f:G \to \mathbb C\), 에 대하여 푸리에 변환을 다음과 같이 정의
\(\hat f(\chi) := \int_{g \in G} f(g)\bar \chi(g) \,dg\)
유한아벨군의 경우
- \(G=(\mathbb Z/N\mathbb Z)^{*}\)와 준동형사상 \(f \colon (\mathbb Z/N\mathbb Z)^{*} \to \mathbb C^{*}\)의 경우
\(\hat f(a) := \sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) e^{2 \pi i a t/N}=\sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) \zeta^{a t}\)
여기서 \( \zeta = e^{2\pi i/N}\)
- 가우스합의 정의와의 비교
- \(a\in (\mathbb Z/N\mathbb Z)^{*}\)와 곱셈에 대한 준동형사상 \(\chi \colon (\mathbb Z/N\mathbb Z)^{*} \to \mathbb C^{*}\)에 대하여 가우스합을 다음과 같이 정의함
\(g_a(\chi) := \sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} \chi(t) e^{2 \pi i a t/N}=\sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} \chi(t) \zeta^{a t}\)
여기서 \( \zeta = e^{2\pi i/N}\)
- 성질
\(g_a(\chi) = \chi(a^{-1}) g_1(\chi)=\bar\chi(a)g_1(\chi)\)
\(\chi(n)=\frac{1}{N}\sum_{(a,N)=1}g_a(\chi)e^{-2\pi i n a/N}\)
푸리에변환(실수의 경우)
- 리 아벨군으로서의 \(G=(\mathbb{R}, +)\) 과 \(f:G \to \mathbb C\) 에 대하여 푸리에변환을 다음과 같이 정의
\(\hat{f}(\xi) := \int_{-\infty}^{\infty} f(x)\ e^{- 2\pi i x \xi}\,dx\)
푸리에 변환의 예
\(f(x)=e^{-\alpha x^2}\)
\(\hat{f}(\xi)=\sqrt{\frac{\pi}{\alpha}}\cdot e^{-\frac{(\pi \xi)^2}{\alpha}}\)
\(f(x)=e^{\pi i (x^2\tau+2x z)\)
\(\hat{f}(\xi)=\sqrt{\frac{i}{\tau}}e^{-\pi i\frac{(\xi-z)^2}{\tau}\)
멜린 변환
- \(G=(\mathbb{R^{+}}, *)\), \(f:G \to \mathbb C\) 에 대하여 멜린변환을 다음과 같이 정의
\(\hat{f}(s) := \int_{0}^{\infty} f(x) x^{s}\frac{dx}{x}\) - 감마함수의 정의, 리만제타함수, 디리클레 L-함수의 해석적확장에 활용
- 슈테판-볼츠만 법칙과 리만제타함수의 값
재미있는 사실
역사
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
수학용어번역
참고할만한 자료
- http://ko.wikipedia.org/wiki/푸리에변환
- http://en.wikipedia.org/wiki/Fourier_transform
- http://www.wolframalpha.com/input/?i=
- 네이버 오늘의과학
관련기사
- [생활속과학원리찾기푸리에 변환은 어떻게 쓰일까]
- 안종제 영신고등학교 물리 교사, 세계일보, 2007-3-25
- [사이언스 21(119)푸리에 급수]
- [1]전자신문, 2006-9-11
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=푸리에변환
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=