푸리에 변환

수학노트
Pythagoras0 (토론 | 기여)님의 2014년 1월 14일 (화) 16:11 판
둘러보기로 가기 검색하러 가기

개요

  • 아벨군 \(G\)과 불변측도, 캐릭터 \(\chi:G\to \mathbb{C}\)그 위에 정의된 함수 \(f:G \to \mathbb C\), 에 대하여 푸리에 변환을 다음과 같이 정의\[\hat f(\chi) := \int_{g \in G} f(g)\bar \chi(g) \,dg\]



유한아벨군의 경우

  • \(G=(\mathbb Z/N\mathbb Z)^{*}\)와 준동형사상 \(f \colon (\mathbb Z/N\mathbb Z)^{*} \to \mathbb C^{*}\)의 경우

\(\hat f(a) := \sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) e^{2 \pi i a t/N}=\sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) \zeta^{a t}\)

여기서 \( \zeta = e^{2\pi i/N}\)




푸리에변환(실수의 경우)

  • 리 아벨군으로서의 \(G=(\mathbb{R}, +)\) 과 \(f:G \to \mathbb C\) 에 대하여 푸리에변환을 다음과 같이 정의\[\hat{f}(\xi) := \int_{-\infty}^{\infty} f(x)\ e^{- 2\pi i x \xi}\,dx\]



푸리에 변환의 예

\(f(x)=e^{-\alpha x^2}\)

\(\hat{f}(\xi)=\sqrt{\frac{\pi}{\alpha}}\cdot e^{-\frac{(\pi \xi)^2}{\alpha}}\)

\(f(x)=e^{\pi i (x^2\tau+2x z)}\)

\(\hat{f}(\xi)=\sqrt{\frac{i}{\tau}}e^{-\pi i\frac{(\xi-z)^2}{\tau}}\)



멜린 변환



재미있는 사실

역사



관련된 항목들



매스매티카 파일 및 계산 리소스



사전형태의 자료



관련기사