Gauge theory
imported>Pythagoras0님의 2012년 10월 28일 (일) 14:27 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
meaning of the gague invariance
- gauge = measure
 - gauge invariance = measurement에 있어서의 invariance를 말함
 - Lagrangian should be gauge invariant.
 
gauge field
- a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one
 
- one example is the electromagnetic field
 
Gauge invariance of the QED Lagrangian
\(\mathcal{L} = \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} -e\bar{\psi}\gamma^\mu \psi A_\mu\)
Now we have a Lagrangian with interaction terms.
- local phase transformation of fields
\(\psi(x) \to e^{i\alpha(x)}\psi(x)\) - gauge transformation of electromagnetic field
\(A_{\mu}(x) \to A_{\mu}(x)+\frac{1}{e}\partial_{\mu}\alpha(x)}\) - Look at the QED page
 
gauge field tensor
- electromagnetic field tensor  \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\)
 - general gauge fields tensor  \(G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}\)
 
examples of renormalizable gauge theory==
- QED
 
- QCD
 
- renormalization
 
 
 
Abelian gauge theory
- abelian gauge theory has a duality
 
 
 
Non-Abelian gauge theory
 
 
differential geometry formulation==
- manifold \(\mathbb R^{1,3}\) and having a vector bundle gives a connection
 
- connection \(A\) = special kind of 1-form 
 
- \(dA\) = 2-form which measures the electromagnetic charge
 
- Then the Chern class measures the magnetic charge.
 
 
 
Principal G-bundle==
 
 
 
3d Chern-Simons theory==
- 3d Chern-Simons theory on \(\Sigma\times \mathbb R^{1}\) with gauge choice \(A_0=0\) is the moduli space of flat connections on \(\Sigma\).
 
- analogy with class field theory
 
- replace \(\Sigma\) by \(spec O_K\)
 
- then flat connection on \(spec O_K\) is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)
 
- Now from An's article, 
 
 
 
메모==
 
 
related items==
 
 
encyclopedia==
 
 
books==
- The Geometry of Physics: An Introduction
 
- An elementary primer for gauge theory
 
- 찾아볼 수학책
 
 
 
expositions==
- On the Origins of Gauge Theory , Callum Quigley, April 14, 2003
 
- WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG
 
 
 
articles==
- Quantum field theory and the Jones polynomial Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[1]
 
- manifold \(\mathbb R^{1,3}\) and having a vector bundle gives a connection
 - connection \(A\) = special kind of 1-form 
 - \(dA\) = 2-form which measures the electromagnetic charge
 - Then the Chern class measures the magnetic charge.
 
- 3d Chern-Simons theory on \(\Sigma\times \mathbb R^{1}\) with gauge choice \(A_0=0\) is the moduli space of flat connections on \(\Sigma\).
 - analogy with class field theory
 - replace \(\Sigma\) by \(spec O_K\)
 - then flat connection on \(spec O_K\) is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)
 - Now from An's article, 
 
- The Geometry of Physics: An Introduction
 - An elementary primer for gauge theory
 - 찾아볼 수학책
 
- On the Origins of Gauge Theory , Callum Quigley, April 14, 2003
 
- WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG
 
- Quantum field theory and the Jones polynomial Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[1]