Classical field theory and classical mechanics

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 9월 22일 (수) 17:15 판
둘러보기로 가기 검색하러 가기
introduction
  • can be formulated using classical fields and lagrangian density
  • change the coordinates and fields accordingly
  • require the invariance of action integral over arbitrary region
  • this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity
  • three important conserved quantity
    • energy
    • momentum
    • angular momentum

 

 

notation
  • \(T\) kinetic energy
  • \(V\) potential energy
  • We have Lagrangian \(L=T-V\)
  • Define the Hamiltonian
  • \(H =p\dot q-L\)
  • \(p\dot q\) is twice of kinetic energy
  • Thus the Hamiltonian represents \(H=T+V\) the total energy of the system

 

 

 

action
  • functional which takes a trajectory(history or path) to a number
  • integral of Lagrangian
    \(\mathcal{S} = \int L\, \mathrm{d}t\)
  • this describes the 'total amount that happend' from one moment to another as a particle traces out a path
  • applying Hamilton's action principle gives rise to a equation of motion
    \({\partial L\over\partial q} - {\mathrm{d}\over \mathrm{d}t }{\partial L\over\partial \dot{q}} = 0\)
  • mass particle
    \(L(q,\dot{q})=T-V=\frac{1}{2}m{\dot{q}}^2-V(q)\)
    \({\partial L\over\partial q} - {\mathrm{d}\over \mathrm{d}t }{\partial L\over\partial \dot{q}} = 0\) becomes 
    \(\mathcal{S} = \int_{t_0}^{t_1} L(q,\dot{q}) \,dt\)
  • in quantum mechanics, \(e^{iS/\hbar}\) will describe the 'change in phase' of a quantum system as it traces out a path

 

 

Euler-Lagrange equation
  • if field satisfies the equation of motion, EL is satisfied
    \(\partial_\mu \left( \frac{\partial \mathcal{L}}{\partial ( \partial_\mu \psi )} \right) - \frac{\partial \mathcal{L}}{\partial \psi} = 0.\)

 

 

equation of continuity
  • current density \(J_{\mu}=(J_0,J_1,J_2,J_3)\) satisfies
    \(\partial^{\mu} J_{\mu}=0\)
  • we get a conserved quantity
    \(G=\int_V J_0(x) \,d^3 x\)
  • Lagrangian can be used to express the current density explicity

 

 

currents
  • quantum analogues of the conserved densities arising by Noether's theorem
  • due to the close relation to observable quantities, they behave similarly to free fields forming the current algebra

 

 

Lagrangian mechanics

From Lagrangian we obtain the conjugate momentum variable

 

 

Hamiltonian mechanics

conjugate variables are on the equal footing

 

 

 

Poisson bracket

For \(f(p_i,q_i,t), g(p_i,q_i,t)\) , we define the Poisson bracket

\(\{f,g\} = \sum_{i=1}^{N} \left[ \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]\)

In quantization we have correspondence

\(\{f,g\} = \frac{1}{i}[u,v]\)

 

 

phase space

 

 

canonically conjugate momentum

 

 

 

links and webpages

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links