리만 가설
이 항목의 스프링노트 원문주소==
개요==
- 리만제타함수의 함수방정식은 다음과 같음
\(\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\)
- 자명한 해는 \(s=-2,-4,-6\cdots\)
- 리만제타함수의 자명하지 않은 해(비자명해)는 그 실수부가 \(1/2\) 이라는 추측
소수정리==
- 리만 제타 함수와 소수 계량 함수의 관계
- "모든 실수 t에 대하여 \(\zeta(1+it)\neq 0 \) 이다" 는 소수정리와 동치명제이다
- 소수정리
비자명해의 수론적 특성==
- 추측
- The positive imaginary parts of nontrivial zeros of \(\zeta(s)\) are linearly independent over \(\mathbb{Q}\)
일반화된 리만가설==
응용==
- Rubinstein-Sarnak 1994
- how often \pi(x)>Li(x)
- even(x) : number of natural numbers , even number of prime factors
- Odd(x) : odd number of prime factors
- 골드바흐 추측
- 1923 하디-리틀우드
- 1937비노그라도프
- 1997 Deshouillers-Effinger-te Riele-Zinoviev
- 순환소수에 대한 아틴의 추측
\(C_{\mathrm{Artin}}=\prod_{q\ \mathrm{prime}} \left(1-\frac{1}{q(q-1)}\right) = 0.3739558136\ldots.\)
- 1967 Hooley
- 1973 Weinberger
- 이차수체 유클리드 도메인의 분류
Spectal theory and RH
- The Selberg trace formula and the Riemann zeta function
- Dennis A. Hejhal
Hilbert-Polya
- http://en.wikipedia.org/wiki/Hilbert-P%C3%B3lya_conjecture
- http://en.wikipedia.org/wiki/Gaussian_Unitary_Ensemble
- Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond Authors: Yan V. Fyodorov
- Montgomery, Hugh L. (1973), "The pair correlation of zeros of the zeta function", Analytic number theory, Proc. Sympos. Pure Math., XXIV, Providence, R.I.: American Mathematical Society, pp. 181–193,
Noncommutatative geometry
- Noncommutative Geometry, Quantum Fields, and Motives Alain Connes, Matilde Marcolli
- Noncommutative Geometry and Number Theory: Where Arithmetic Meets Geometry and Physics (Aspects of Mathematics) Caterina Consani, Matilde Marcolli (Eds.)
Random matrices
- http://hal.archives-ouvertes.fr/hal-00119410/en/
- http://www.secamlocal.ex.ac.uk/people/staff/mrwatkin/zeta/random.htm
- Random Matrices and the Riemann zeta function
Computation of non-trivial zeros
R. P. Brent, “On the zeros of the Riemann zeta function in the critical strip”, Mathematics of Computation
33 (1979), 1361–1372.
The Riemann-Siegel Expansion for the Zeta Function: High Orders and Remainders, M. V. Berry
http://www.dtc.umn.edu/~odlyzko/doc/arch/fast.zeta.eval.pdf
http://wwwmaths.anu.edu.au/~brent/pd/rpb047.pdf
재미있는 사실==
- 영화속 오류 russell crowe riemann zeta
- http://mathoverflow.net/questions/13647/why-does-the-riemann-zeta-function-have-non-trivial-zeros
역사==
관련된 항목들==
수학용어번역==
사전 형태의 자료==
관련논문==
- Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse Bernhard Riemann, November 1859
- 리만제타함수의 함수방정식은 다음과 같음
\(\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\) - 자명한 해는 \(s=-2,-4,-6\cdots\)
- 리만제타함수의 자명하지 않은 해(비자명해)는 그 실수부가 \(1/2\) 이라는 추측
- 리만 제타 함수와 소수 계량 함수의 관계
- "모든 실수 t에 대하여 \(\zeta(1+it)\neq 0 \) 이다" 는 소수정리와 동치명제이다
- 소수정리
- 추측
- The positive imaginary parts of nontrivial zeros of \(\zeta(s)\) are linearly independent over \(\mathbb{Q}\)
- The positive imaginary parts of nontrivial zeros of \(\zeta(s)\) are linearly independent over \(\mathbb{Q}\)
- Rubinstein-Sarnak 1994
- how often \pi(x)>Li(x)
- how often \pi(x)>Li(x)
- even(x) : number of natural numbers , even number of prime factors
- Odd(x) : odd number of prime factors
- 골드바흐 추측
- 1923 하디-리틀우드
- 1937비노그라도프
- 1997 Deshouillers-Effinger-te Riele-Zinoviev
- 순환소수에 대한 아틴의 추측
\(C_{\mathrm{Artin}}=\prod_{q\ \mathrm{prime}} \left(1-\frac{1}{q(q-1)}\right) = 0.3739558136\ldots.\) - 1967 Hooley
- 1973 Weinberger
- 이차수체 유클리드 도메인의 분류
33 (1979), 1361–1372.
- 영화속 오류 russell crowe riemann zeta
- http://mathoverflow.net/questions/13647/why-does-the-riemann-zeta-function-have-non-trivial-zeros
- Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse Bernhard Riemann, November 1859