방정식과 대칭성 : 치환군
이 항목의 수학노트 원문주소
개요
- 군이란 어떤 불변성을 가진 대상에 대한 ‘변화’들의 모임을 말한다
- 군론에 대해서는 고교생도 이해할 수 있는 군론 입문 항목을 참조
- 군에 의하여 방정식의 해들은 그 내부에서 서로 바뀐지만 해가 만족시키는 방정식은 변하지 않는다.
- 이것이 바로 ‘변화속의불변’ – 대칭성이다.
- \(\text{Gal}(\mathbb{C}/\mathbb{R})=\{\operatorname{id}, \sigma}\}\)의 경우 \(\sigma\)는 복소수체의 실수체 \(\mathbb{R}\)의 원소를 변화시키지 않음.
- \(\sigma(i)=-i, \sigma(-i)=i\)에서 방정식 \(x^2+1=0\)의 해가 갈루아군의 원소에 의해서 서로 위치를 바꾸는 것을 볼 수 있음
- \(\sigma(i)=-i, \sigma(-i)=i\)에서 방정식 \(x^2+1=0\)의 해가 갈루아군의 원소에 의해서 서로 위치를 바꾸는 것을 볼 수 있음
- 갈루아 이론 은 5차방정식과 근의 공식 문제를 풀기 위해 방정식의 해가 가지는 대칭성에 대한 연구로부터 시작되었다
켤레복소수의 예
실계수 방정식 \(x^2+1=0\) 에 대하여 생각해보자. 이 방정식은 실수 내에서는 해를 가지지 않으며, 해를 얻기 위해서는 허수라는 것을 실수에 집어넣어 실수를 복소수로 확장하는 작업이 필요하다. (유식한 말을 약간 사용하자면, 복소수체 \(\mathbb{C}\) 는 실수체 \(\mathbb{R}\)의 체확장이라 한다) 이 방정식은 복소수 내에서 두 개의 해 \(\{i,-i\}\)를 가진다.
이제 켤레복소수에 대해 생각해볼 차례이다. 복소수 \(\alpha+\beta i\) (\(\alpha, \beta\)는 실수) 에 대하여 복소수 \(\alpha-\beta i\)를 켤레복소수라 한다. \(\alpha+\beta i\)의 켤레복소수를 취하여 \(\alpha-\beta i\)를 얻는데, 여기서 또한번 켤레복소수를 취하면 다시 \(\alpha+\beta i\) 를 얻게 된다. 복소수를 켤레복소수로 보내는 함수를 \(\sigma(z)=\bar{z}\) 라고 표현한다면, \(\sigma^2(z)=\bar{\bar{z}}=z\)가 된다. 이를 간략하게 쓰자면 \(\sigma^2=\operatorname{id}\) , 즉 켤레복소수를 취하는 것을 함수로 보아 자기자신과 합성을 하면 항등함수를 얻게 된다는 것이다.
여기서 원소 두 개짜리 군 \(\{\operatorname{id}, \sigma}\}\) 을 얻는다. 이를 유식하게는\(\text{Gal}(\mathbb{C}/\mathbb{R})=\{\operatorname{id}, \sigma}\}\) 라고 하지만, 차차 알아가도록 하자.
지금 방정식 \(x^2+1=0\)과 그 해집합 \(\{i,-i\}\) 그리고 복소수를 복소수로 보내주는 두 함수, 항등함수와 켤레복소수 함수로 만들어진 군 \(\{\operatorname{id}, \sigma}\}\)가 있다.
켤레복소수에 의하면, \(\sigma(i)=-i, \sigma(-i)=i\)에서 방정식 \(x^2+1=0\)의 해가 서로 위치를 바꾸는 것을 볼 수 있다.
군에 의하여 방정식의 해들은 그 내부에서 서로 바뀐다. 그러나 그 둘이 만족시키는 방정식 \(x^2+1=0\) 은 변하지 않는다. 이것이 바로 ‘변화속의불변’ – 대칭성이다. 한 방정식의 모든 해는 서로 변해도, 그들은 모두 여전히 같은 방정식을 만족시킨다.
일반화
(정리)
체 \(F\)에 대하여, \(a_n , a_{n-1} , \cdots, a_0 \in F\) 라 하자.
\(\alpha \in \bar{F}\)가 기약방정식 \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0\)의 해이면, 방정식의 해\(\alpha = \alpha_1,\cdots.\alpha_n\)를 모두 추가하여 만든 체확장 \(K=F(\alpha_1,\cdots,\alpha_n)\)의 갈루아군 \(\text{Gal}(K/F)\) 의 원소 \(\sigma\)에 대하여 \(\sigma(\alpha)\) 도 같은 방정식의 해가 된다.
(증명)
\(\alpha \)는 방정식 \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0\)의 해이므로, \(a_n {\alpha}^n + a_{n-1} {\alpha}^{n-1} + a_{n-2} {\alpha}^{n-2} + \cdots + a_1 {\alpha} + a_0 = 0\).
\(\sigma\in\text{Gal}(K/F)\)에 대하여 \(\sigma(a_n {\alpha}^n + a_{n-1} {\alpha}^{n-1} + a_{n-2} {\alpha}^{n-2} + \cdots + a_1 {\alpha} + a_0)= \sigma(0)=0\) 이다.
그런데 \(\sigma\in\text{Gal}(K/F)\) 는 사칙연산을 보존하며 체 \(F\)의 원소들을 변화시키지 않으므로, \(\sigma(a_n {\alpha}^n + a_{n-1} {\alpha}^{n-1} + a_{n-2} {\alpha}^{n-2} + \cdots + a_1 {\alpha} + a_0)=a_n \sigma(\alpha)^n + a_{n-1} \sigma(\alpha)^{n-1} + a_{n-2} \sigma(\alpha)^{n-2} + \cdots + a_1 \sigma(\alpha) + a_0 = 0\)
을 만족시킨다.
따라서 \(\sigma(\alpha)\)도 방정식 \(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_0 = 0\)의 해가 된다. ■
예
방정식의 해를 요리조리 결합시키는 과정을 체계적으로 생각하는데서, 바로 군론의 아이디어가 싹트게 된다. 오늘은 그에 대한 이야기이다.
\(z^4+z^3+z^2+z^1+1=0\)의 네 해는 다음과 같다는 것을 지난 번에 보였다.
\(\alpha_1=\frac{1}{4} \left(-1+\sqrt{5}+i \sqrt{10+2\sqrt{5}}\right)=\zeta\)
\(\alpha_2=\frac{1}{4} \left(-1-\sqrt{5}+i \sqrt{10-2 \sqrt{5}}\right)=\zeta^2\)
\(\alpha_3=\frac{1}{4} \left(-1-\sqrt{5}-i \sqrt{10-2 \sqrt{5}}\right)=\zeta^3\)
\(\alpha_4=\frac{1}{4} \left(-1+\sqrt{5}-i \sqrt{10+2\sqrt{5}}\right)=\zeta^4\)
여기서 \(\zeta=e^{2\pi i \over 5}=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}\).
이제 치환이라는 말을 정의하자. 치환이란 우리의 경우에는 네 개의 원소로 구성된 집합 \(\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}\)에 정의되는 전단사함수를 말한다. \(\alpha_1\)을 \(\alpha_3\)으로 보내고, \(\alpha_3\)을 \(\alpha_1\)로 보내고, \(\alpha_2\)와 \(\alpha_4\)는 그대로 두는 치환을 간단히 다음과 같이 쓰자.
\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{pmatrix}\)
방정식의 해의 치환군은 해의 위치를 서로 바꿔주는 치환 중에서, 해들이 만족시키는 방정식의 대수적관계 (더 정확히는 유리계수다항식) 를 보존하는 것들로 정의된다.
가령 위의 네 해는 \(\alpha_1\alpha_4=\alpha_2\alpha_3=1\), \(\alpha_1^2\alpha_3=1\)와 같은 대수적관계들을 만족시킨다. 그러면 치환군의 원소는 어떤 것들이 있을지 생각해볼 수 있겠다.
\(\tau=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4\end{pmatrix}\) 는 치환군의 원소가 될 수 없는데, \(\alpha_1\alpha_4=1\) 임에 반하여, \(\tau(\alpha_1)\tau(\alpha_4)=\alpha_2\alpha_4\neq 1\)이기 때문이다.(\(\alpha_i=\zeta^i\) 임을 기억하자)
\(\alpha_1\alpha_4=\alpha_2\alpha_3=1\)라는 조건으로부터, \(\{1,4\}\)와 \(\{2,3\}\) 이 쌍으로 움직여야 한다는 것을 알 수 있다. 따라서 다음과 같은 치환들만이 치환군의 원소 후보가 될 수 있다.
\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)
그러나 여기서 \(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{pmatrix}\)와 같은 경우는 치환군의 원소가 될 수 없는데, \(\alpha_1^2\alpha_3=1\) 임에 반하여, \(\tau(\alpha_1)^2\tau(\alpha_3)=\alpha_1^2\alpha_2\neq 1\)이기 때문이다.(\(\alpha_i=\zeta^i\) 이므로)
결국엔 다음의 네 가지 치환만이 치환군의 원소가 될 수 있게 된다.
\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)
\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\)는 함수이므로, 이 녀석의 제곱이란 함수의 합성으로 이해할 수 있다.
\(\sigma=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{pmatrix}\) 로 두면,\(\sigma^2= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\), \(\sigma^3=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{pmatrix}\), \(\sigma^4=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\) 가 되어, 모든 원소가 \(\sigma\)로부터 얻어지게 된다.
즉 친숙한 군 {차렷, 좌향좌, 우향우, 뒤로돌아}와 비교하자면, \(\sigma\)는 좌향좌 또는 우향우와 같은 역할을 방정식의 해에 대하여 하고 있다. 크기가 4인 순환군이 된다.
예
\(x^4 - 10x^2 + 1=0\)의 네 해는 다음과 같이 주어진다.
\(\alpha_1 = \sqrt{2} + \sqrt{3}\)
\(\alpha_2 = \sqrt{2} - \sqrt{3}\)
\(\alpha_3 = -\sqrt{2} + \sqrt{3}\)
\(\alpha_4= -\sqrt{2} - \sqrt{3}\)
이 경우엔 다음의 네 가지 치환만이 치환군의 원소가 될 수 있게 된다.
\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}\) ,\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\),\(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)
그런데
\(x=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{pmatrix}\)로 쓰면, \(x^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)
\(y=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{pmatrix}\)로 쓰면, \(y^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)
\(z=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{pmatrix}\)로 쓰면, \(z^2=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{pmatrix}\)
로 모두 제곱하면 항등원이 되어버리므로, 이 군은 절대로 {차렷, 좌향좌, 우향우, 뒤로돌아}와 같은 구조를 가질 수 없음을 알게 된다.
방정식 \(z^4+z^3+z^2+z^1+1=0\)와 \(x^4 - 10x^2 + 1=0\) 는 뭔가 질적으로 다르다는 것을 이 치환군은 말해주고 있다.
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들