삼각치환
http://bomber0.myid.net/ (토론)님의 2009년 12월 2일 (수) 16:41 판 (피타고라스님이 이 페이지의 위치를 <a href="/pages/1946916">02 수학과 학부생을 위한 노트</a>페이지로 이동하였습니다.)
간단한 소개
\(R(x,y)\)는 \(x,y\)의 유리함수라고 가정
\(R(\cos x, \sin x)\)의 적분
- 다음과 같은 치환적분을 사용
\(t=\tan \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1+t^2}\), \(\sin x=\frac{2t}{1+t^2}\), \(\cos x=\frac{1-t^2}{1+t^2}\)
\(\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt\)
\(R(\cosh x, \sinh x)\)의 적분
-
다음과 같은 치환적분을 사용
\(t=\tanh \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1-t^2}\), \(\sinh x=\frac{2t}{1-t^2}\), \(\cosh x=\frac{1+t^2}{1-t^2}\)
\(\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt\)
\(R(x,\sqrt{1-x^2})\)의 적분
- \(x=\cos u\) 치환을 사용하면, \(R'(\cos x, \sin x)\) 의 적분으로 변화
\(R(x,\sqrt{x^2-1})\)의 적분
- \(x=\cosh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화
\(R(x,\sqrt{x^2+1})\)의 적분
- \(x=\sinh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화
\(R(x,\sqrt{ax^2+bx+c})\)의 적분
- \(ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}\) 으로 쓴 다음
- \(ac-b^2\)와 \(a\)의 부호에 따라, 적당히 치환하여 위의 경우로 끌고가면 끝.
재미있는 사실
역사
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
수학용어번역
참고할만한 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- 네이버 오늘의과학
관련기사
- 네이버 뉴스 검색 (키워드 수정)
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 네이버 블로그 검색 http://cafeblog.search.naver.com/search.naver?where=post&sm=tab_jum&query=