역함수를 이용한 치환적분

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 12:56 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소==    
개요
==
  • 역함수를 이용한 치환적분법
  \(\int f(x)\,dx=xf(x)-\int xf'(x)\,dx+xf(x)-\int f^{-1}(f(x))f'(x)\,dx+xf(x)-G(f(x))\) 여기서 \(G(x)= \int f^{-1}(x)\,dx\)   문제   \(\int \sqrt{\frac{x}{1-x}}\,dx\) \(G(x)=\int f^{-1}(x)\,dx= \int\frac{x^2}{1+x^2}\,dx=\int(1-\frac{1}{1+x^2})\,dx=x-\arctan x+C\) 따라서,  \(\int \sqrt{\frac{x}{1-x}}\,dx= (x-1)\sqrt{\frac{x}{1-x}}+\arctan{\sqrt{\frac{x}{1-x}}}+C\)    

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역==    

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그