베버(Weber) 모듈라 함수
개요
- 베버의 class invariant 라는 이름으로 잘 알려져 있으며, 베버는 Schläfli 함수로 불렀음
- class field theory에서 중요한 역할
정의
\(\mathfrak{f}(\tau)=\frac{e^{-\frac{\pi i}{24}}\eta(\frac{\tau+1}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})\)
\(\mathfrak{f}_ 1(\tau)=\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1-q^{n-\frac{1}{2}})\)
\(\mathfrak{f}_ 2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})\)
\(\gamma_2(\tau)=\frac{\mathfrak{f}(\tau)^{24}-16}{\mathfrak{f}(\tau)^8}=\sqrt[3]{j(\tau)}\)
\(\gamma_3(\tau)= \frac{(\mathfrak{f}(z)^{24} + 8) (\mathfrak{f}_ 1(z)^8 - \mathfrak{f}_ 2(z)^8)}{\mathfrak{f}(z)^8}=\sqrt{j(\tau)-1728}\)
여기서 \(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\) 는 데데킨트 에타함수
항등식
- \(\mathfrak{f}_ 1(2\tau)\mathfrak{f}_ 2(\tau)=\sqrt2\)
- \(\mathfrak{f}(\tau)\mathfrak{f}_ 1(\tau)\mathfrak{f}_ 2(\tau)=\sqrt2\)
- \(\mathfrak{f}(\tau)^8=\mathfrak{f}_ 1(\tau)^8+\mathfrak{f}_ 2(\tau)^8\)
모듈라 성질
- \(\mathfrak{f}(\tau+1)=\zeta_{48}^{-1}\mathfrak{f}_ 1(\tau)\)
- \(\mathfrak{f}_ 1(\tau+1)=\zeta_{48}^{-1}\mathfrak{f}(\tau)\)
- \(\mathfrak{f}_ 2(\tau+1)=\zeta_{24}\mathfrak{f}_ 2(\tau)\)
- \(\mathfrak{f}(-\frac{1}{\tau})=\mathfrak{f}(\tau)\)
- \(\mathfrak{f}_ 1(-\frac{1}{\tau})=\mathfrak{f}_ 2(\tau)\)
- \(\mathfrak{f}_ 2(-\frac{1}{\tau})=\mathfrak{f}_ 1(\tau)\)
j-invariant 와의 관계
- 타원 모듈라 j-함수 (j-invariant)
- \(\mathfrak{f}(\tau)^{24}\), \(-\mathfrak{f}_ 1(\tau)^{24}\), \(-\mathfrak{f}_ 2(\tau)^{24}\)는 \((x-16)^3-j(\tau)x=0\) 의 근이다
special values
- \(\mathfrak{f}(i)^8=4\)
- \(\mathfrak{f}_ 1(i)^8=2\)
- \(\mathfrak{f}_ 2(i)^8=2\)
- \(\mathfrak{f}_ 1(2i)^8=8\)
데데킨트 에타함수와의 관계
\(\mathfrak{f}(\tau)=\frac{e^{-\frac{\pi i}{24}}\eta(\frac{\tau+1}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})\)
\(\mathfrak{f}_ 1(\tau)=\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1-q^{n-\frac{1}{2}})\)
\(\mathfrak{f}_ 2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})\)
여기서 \(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})\) 는 데데킨트 에타함수
q-초기하급수와의 관계
- q-초기하급수(q-hypergeometric series) 의 공식\[\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n (n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\]
- \(z=q^{1/2}\) 인 경우
\[\prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})=\sum_{n\geq 0}\frac{q^{n (n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} (q^{1/2})^n=\sum_{n\geq 0}\frac{q^{n^2/2}}{(1-q)(1-q^2)\cdots(1-q^n)} \] \[\prod_{n=1}^{\infty} (1+q^{2n-1})=\sum_{n\geq 0}\frac{q^{n^2}}{(1-q^2)(1-q^4)\cdots(1-q^{2n})} \]
- \(z=q\) 인 경우
\[\prod_{n=1}^{\infty} (1+q^{n})=\sum_{n\geq 0}\frac{q^{n (n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}q^n=\sum_{n\geq 0}\frac{q^{n (n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\]
- 위의 결과로부터 다음을 얻을 수 있다
\[\mathfrak{f}(2\tau)=q^{-1/24}\prod_{n=1}^{\infty} (1+q^{2n-1})=q^{-1/24}\sum_{n\geq 0}\frac{q^{n^2}}{(1-q^2)(1-q^4)\cdots(1-q^{2n})}\]
\[\mathfrak{f}_ 2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=\sqrt{2}q^{1/24}\sum_{n\geq 0}\frac{q^{n (n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\]
역사
메모
관련된 항목들
- 라마누잔의 class invariants
- 데데킨트 에타함수
- 로저스-라마누잔 연분수와 항등식
- Q-초기하급수(q-hypergeometric series)와 양자미적분학(q-calculus)
- 자코비 세타함수
- 타원 모듈라 j-함수 (j-invariant)
수학용어번역
관련논문
- Weber's class invariants revisited
- Reinhard Schertz, Journal de théorie des nombres de Bordeaux, 14 no. 1 (2002), p. 325-343
- On The Singular Values Of Weber Modular Functions
- Noriko Yui , Don Zagier, Math. Comp. 66 (1997), 1645-1662
- Weber's Class Invariants
- B. J. Birch, Mathematika 16 (1969)
- http://www.jstor.org/action/doBasicSearch?Query=
관련도서
- 베버의 책
- Elliptische functionen und algebraische zahlen (1891). available in print
- Lehrbuch der Algebra (Volume 1) (1898). available in print
- Lehrbuch der Algebra (Volume 2) (1898). available in print
- Lehrbuch der Algebra (Volume 3) (1898). available in print
- Theorie der Abelschen Functionen vom Geschlecht 3 (1876). available in print