콕세터 원소(Coxeter element)
개요
- 유한 콕세터 군의 특별한 원소들
- 하나의 conjugacy class를 이룬다
- 원소의 order는 Coxeter number가 된다
- quiver의 표현론 등에서 중요한 역할
정의
- 유한 콕세터 군이 다음과 같이 주어진 경우\[\left\langle r_1,r_2,\ldots,r_n \mid r_1^2=\cdots=r_n^2=(r_ir_j)^{m_{ij}}=1\right\rangle\]
- 임의의 치환 \(\pi\in S_{n}\) 에 대하여, 콕세터 군의 원소 \(r_{\pi(1)}r_{\pi(2)}\cdots r_{\pi(n)}\)를 콕세터 원소라 한다
예
대칭군의 콕세터 원소
정이면체군의 콕세터 원소
역사
- 1951년 콕세터
- 수학사 연표
메모
- http://www.ams.org/mathscinet/search/publdoc.html?r=1&pg1=CNO&s1=106428&loc=fromrevtext
- Chapuy, Guillaume, and Christian Stump. “Counting Factorizations of Coxeter Elements into Products of Reflections.” arXiv:1211.2789 [math], November 12, 2012. http://arxiv.org/abs/1211.2789.
- Reiner, Victor, Vivien Ripoll, and Christian Stump. “On Non-Conjugate Coxeter Elements in Well-Generated Reflection Groups.” arXiv:1404.5522 [math], April 22, 2014. http://arxiv.org/abs/1404.5522.
- The spectrum of a Coxeter transformation, affine Coxeter transformations, and the defect map
- http://www.math.lsa.umich.edu/~jrs/coxplane.html
- http://www-igm.univ-mlv.fr/~fpsac/FPSAC07/SITE07/Lecture/July3/Nathan%20Reading.pdf
- Coxeter transformations and the representation theory of algebras
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
리뷰, 에세이, 강의노트
- Bill Casselman, The magical Coxeter transformation Sep 2011
관련논문
- Damianou, Pantelis A., and Charalampos A. Evripidou. “Characteristic and Coxeter Polynomials for Affine Lie Algebras.” arXiv:1409.3956 [math], September 13, 2014. http://arxiv.org/abs/1409.3956.
- Michel, Jean. 2014. “‘Case-Free’ Derivation for Weyl Groups of the Number of Reflection Factorisations of a Coxeter Element.” arXiv:1408.0721 [math], August. http://arxiv.org/abs/1408.0721.
- Ladkani, Sefi. “On the Periodicity of Coxeter Transformations and the Non-Negativity of Their Euler Forms.” Linear Algebra and Its Applications 428, no. 4 (February 1, 2008): 742–53. doi:10.1016/j.laa.2007.08.002.
- Suter, Ruedi. “Coxeter and Dual Coxeter Numbers.” Communications in Algebra 26, no. 1 (1998): 147–53. doi:10.1080/00927879808826122.
- Berman, S, Y. S Lee, and R. V Moody. “The Spectrum of a Coxeter Transformation, Affine Coxeter Transformations, and the Defect Map.” Journal of Algebra 121, no. 2 (March 1989): 339–57. doi:10.1016/0021-8693(89)90070-7.
- Kostant, Bertram. “The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group.” American Journal of Mathematics 81 (1959): 973–1032.
- Coleman, A. J. “The Betti Numbers of the Simple Lie Groups.” Canadian Journal of Mathematics. Journal Canadien de Mathématiques 10 (1958): 349–56.
- The product of the generators of a finite group generated by reflections, HSM Coxeter - Duke Mathematical Journal, 1951
- Coxeter, H. S. M. “Discrete Groups Generated by Reflections.” Annals of Mathematics, Second Series, 35, no. 3 (July 1, 1934): 588–621. doi:10.2307/1968753.
- 602p