Compact Kähler manifolds

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 11월 16일 (월) 09:54 판
둘러보기로 가기 검색하러 가기

introduction

  • 틀:수학노트
  • Kahler geometry = intersection of Riemmanian, Complex, symplectic geometry
  • A Hermitian metric $h$ on a complex manifold $(M^{2m},J)$ : $h(X,Y)=h(JX,JY)$
  • fundamental 2-form (or Kähler form) $(1,1)$-form given by $\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}$
  • If $\Omega$ is closed, i.e., $d\Omega=0$, we call $h$ a Kahler metric
  • there exists a real function $K$ such that $\Omega=i\partial \overline{\partial} K$, which we call the Kahler potential
  • The Ricci form is one of the most important objects on a Kahler manifold

Hermitian metric on a complex manifold

  • Let $h$ be a Hermitian metric and the coefficient

$$ h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}) $$


examples

flat matric

  • $h_{\alpha\overline{\beta}}=\frac{1}{2}\delta_{\alpha\beta}$
  • $\Omega=\frac{i}{2}\sum_{\alpha=1}^m dz_{\alpha}\wedge d\bar{z}_{\alpha}$
  • potential $u(z)=\frac{1}{2}|z|^2$

dimension 1 case

  • $h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h$
  • $\Omega=-2ih\,dz \wedge d\overline{z}$
  • for $\mathbb{P}^{1}$,

$$ \Omega=\frac{-i}{2\pi}\frac{dz \wedge d\bar{z}}{(1+|z|^2)^2} $$ see Chern class

etc


cohomology theory

  • Hodge theory of harmonic forms
  • compact Kähler manifold of dimension n
  • Dolbeault cohomology
  • $h^{p,q}=\operatorname{dim} H^{p,q}(X)$
  • $h^{p,q}=h^{q,p}$
  • Serre duality $h^{p,q}=h^{n-p,n-q}$


Hodge decomposition theorem

  • Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition

$$ H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M) $$ Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$.


Delbeault

  • cohomology of sheaves of holomorphic forms
theorem

Let $\Omega$ be the space of holomorphic $p$-forms on $M$ $$ H^{p,q}(M)\cong H^q(M,\Omega^p) $$


computational resource


expositions

articles

  • Berczi, Gergely. “Towards the Green-Griffiths-Lang Conjecture via Equivariant Localisation.” arXiv:1509.03406 [math], September 11, 2015. http://arxiv.org/abs/1509.03406.
  • Treger, Robert. ‘On Uniformization of Compact Kahler Manifolds’. arXiv:1507.01379 [math], 6 July 2015. http://arxiv.org/abs/1507.01379.
  • Dinh, Tien-Cuong, Fei Hu, and De-Qi Zhang. ‘Compact K"ahler Manifolds Admitting Large Solvable Groups of Automorphisms’. arXiv:1502.07060 [math], 25 February 2015. http://arxiv.org/abs/1502.07060.