비에타의 공식
Pythagoras0 (토론 | 기여)님의 2021년 2월 17일 (수) 04:46 판
이 항목의 스프링노트 원문주소
개요
- 파이에 대한 무한곱 표현
- François Viète에 의해 발견\[\frac{2}{\pi}=\frac{\sqrt{2}}{2}\frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}}{2}\cdots\]
\(\frac{2}{\pi }=\frac{\sqrt{2}}{2}\frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}}{2}\frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}}}}{2}\frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}}}}}{2}\frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}}}}}}{2}\)
재미있는 사실
역사
- 1579년? 1593년 발견
- http://www.google.com/search?hl=en&tbs=tl:1&q=Viete's+formula
- 수학사 연표
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Viète's_formula
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- The Union of Vieta's and Wallis's Products for Pi
- Thomas J. Osler, The American Mathematical Monthly, Vol. 106, No. 8 (Oct., 1999), pp. 774-776
- http://www.jstor.org/action/doBasicSearch?Query=
- http://dx.doi.org/
블로그
메타데이터
위키데이터
- ID : Q949597
Spacy 패턴 목록
- [{'LOWER': 'viète'}, {'LOWER': "'s"}, {'LEMMA': 'formula'}]