디오판투스 방정식
둘러보기로 가기
검색하러 가기
개요
- 다변수다항식의 정수해 또는 유리수해를 찾는 문제를 디오판투스 방정식이라 함
- 부정방정식으로도 불림
예
- \(x^n+y^n=z^n\)의 정수해에 대한 페르마의 마지막 정리가 유명한 예
- \(x^2-dy^2=\pm 1\) 형태의 펠 방정식은 초등정수론과 대수적수론에서 중요한 역할을 함
- \(x^3+y^3=1729\)의 정수해. 라마누잔과 1729 참조
- \(3x^3+4y^3+5z^3=0\) (http://www.math.lsu.edu/~verrill/teaching/math7280/selmer_example/selmer_example.pdf)
- 합동수 문제 (congruent number problem)
- 사각 피라미드 퍼즐
- 펠 방정식(Pell's equation)
- 피타고라스 쌍(Pythagorean triple)
- 라마누잔-나겔 방정식
역사
메모
관련된 항목들
수학용어번역
- diophantine - 대한수학회 수학용어집
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/디오판투스방정식
- http://en.wikipedia.org/wiki/Diophantine_equation
- http://en.wikipedia.org/wiki/Thue-Siegel-Roth_theorem
- 에릭 웨이스타인, MathWorld - 디오판투스 방정식
- http://mathworld.wolfram.com/DiophantineEquation.html
리뷰, 에세이, 강의노트
- Pannekoek, René. “Diophantus Revisited: On Rational Surfaces and K3 Surfaces in the Arithmetica.” arXiv:1509.06138 [math], September 21, 2015. http://arxiv.org/abs/1509.06138.
- Das, Pranabesh, and Amos Turchet. “Invitation to Integral and Rational Points on Curves and Surfaces.” arXiv:1407.7750 [math], July 29, 2014. http://arxiv.org/abs/1407.7750.
- Ono, Ken. “Ramanujan, Taxicabs, Birthdates, ZIP Codes, and Twists.” The American Mathematical Monthly 104, no. 10 (December 1997): 912. doi:10.2307/2974471.
관련도서
- Diophantine equations
- Mordell, L. J. (1969)
노트
위키데이터
- ID : Q905896
말뭉치
- Diophantine equation, equation involving only sums, products, and powers in which all the constants are integers and the only solutions of interest are integers.[1]
- Congruence methods provide a useful tool in determining the number of solutions to a Diophantine equation.[1]
- Linear Diophantine equation in two variables takes the form of \(ax+by=c,\) where \(x, y \in \mathbb{Z}\) and a, b, c are integer constants.[2]
- : Solve the Homogeneous linear Diophantine equation \(6x+9y=0, x, y \in \mathbb{Z}\).[2]
- Use the following steps to solve a non-homogeneous linear Diophantine equation.[2]
- Finding the solution or solutions to a Diophantine equation is closely tied to modular arithmetic and number theory.[3]
- A Diophantine equation in the form is known as a linear combination.[3]
- The solutions to the diophantine equation correspond to lattice points that lie on the line.[3]
- Sometimes, modular arithmetic can be used to prove that no solutions to a given Diophantine equation exist.[3]
- A linear Diophantine equation is an equation of the first-degree whose solutions are restricted to integers.[4]
- This Diophantine equation was first studied extensively by Indian mathematician Brahmagupta around the year 628.[4]
- A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one.[5]
- The simplest linear Diophantine equation takes the form ax + by = c, where a, b and c are given integers.[5]
- A homogeneous Diophantine equation is a Diophantine equation that is defined by a homogeneous polynomial.[5]
- If a Diophantine equation has as an additional variable or variables occurring as exponents, it is an exponential Diophantine equation.[5]
- We call a “Diophantine equation” to an equation of the form, \(f(x_1, x_2, \ldots x_n) = 0\) where \(n \geq 2\) and \(x_1, x_2, \ldots x_n\) are integer variables.[6]
- Hilbert's 10th problem asked if an algorithm existed for determining whether an arbitrary Diophantine equation has a solution.[7]
- We exhibit a collection of (probably infinitely many) rational numbers k for which this Diophantine equation is satisfied.[8]
- Brindza, B.: On a diophantine equation connected with the Fermat equation.[9]
소스
- ↑ 1.0 1.1 Diophantine equation | mathematics
- ↑ 2.0 2.1 2.2 5.1: Linear Diophantine Equations
- ↑ 3.0 3.1 3.2 3.3 Art of Problem Solving
- ↑ 4.0 4.1 Famous Diophantine Equations
- ↑ 5.0 5.1 5.2 5.3 Diophantine equation
- ↑ Diophantine — SymPy 1.7.1 documentation
- ↑ Diophantine Equation -- from Wolfram MathWorld
- ↑ On the Diophantine Equation x^6+ky^3=z^6+kw^3
- ↑ Zeros of polynomials and exponential diophantine equations
메타데이터
위키데이터
- ID : Q905896
Spacy 패턴 목록
- [{'LOWER': 'diophantine'}, {'LEMMA': 'equation'}]
- [{'LOWER': 'diophantic'}, {'LEMMA': 'equation'}]