Razumov-Stroganov Conjecture
둘러보기로 가기
검색하러 가기
introduction
- The Razumov-Stroganov correspondence, an important link between statistical physics and combinatorics proved in 2011 by L. Cantini and A. Sportiello
- the ground-state coefficients in the even-length dense O(1) loop model
- the enumeration of fully-packed loop configuration on the square, with alternating boundary conditions, refined according to the link pattern for the boundary points
- relates the ground state eigenvector of the O(1) dense loop model on a semi-infinite cylinder to a refined enumeration of fully-packed loops, which are in bijection with alternating sign matrices.
- http://www.msri.org/web/msri/scientific/workshops/show?p_p_id=event_WAR_eventportlet&p_p_lifecycle=2&p_p_state=normal&p_p_mode=view&p_p_resource_id=viewAttach&p_p_cacheability=cacheLevelPage&p_p_col_id=column-2&p_p_col_pos=2&p_p_col_count=3&_event_WAR_eventportlet_attachmentid=403&_event_WAR_eventportlet_eventid=Wm578
articles
- Striker, Jessica. ‘The Toggle Group, Homomesy, and the Razumov-Stroganov Correspondence’. arXiv:1503.08898 [cond-Mat, Physics:math-Ph], 30 March 2015. http://arxiv.org/abs/1503.08898.
- Cantini, Luigi, and Andrea Sportiello. ‘Proof of the Razumov-Stroganov Conjecture’. arXiv:1003.3376 [cond-Mat, Physics:math-Ph], 17 March 2010. http://arxiv.org/abs/1003.3376.
- Around the Razumov–Stroganov conjecture: proof of a multi-parameter sum rule
메타데이터
위키데이터
- ID : Q3848436
Spacy 패턴 목록
- [{'LOWER': 'alternating'}, {'LOWER': 'sign'}, {'LEMMA': 'matrix'}]