"삼각치환"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
4번째 줄: | 4번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * <math>ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}</math> 으로 쓴 다음 | + | * <math>R(x,\sqrt{1-x^2})</math>의 적분<br><math>x=\cos u</math> 치환을 사용하면, <math>R'(\cos x, \sin x)</math> 의 적분으로 변화<br> |
− | * <math>ac-b^2</math>와 <math>a</math>의 부호에 따라, 적당히 치환하여 위의 경우로 끌고가면 끝. | + | * <br> |
− | + | * <math>R(x,\sqrt{x^2-1})</math>의 적분<br><math>x=\cosh u</math> 치환을 사용하면, <math>R'(\cosh x, \sinh x)</math>의 적분으로 변화<br> | |
+ | * <br> | ||
+ | * <math>R(x,\sqrt{x^2+1})</math>의 적분<br><math>x=\sinh u</math> 치환을 사용하면, <math>R'(\cosh x, \sinh x)</math>의 적분으로 변화<br> | ||
+ | * <br> | ||
+ | * <math>R(x,\sqrt{ax^2+bx+c})</math>의 적분<br><math>ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}</math> 으로 쓴 다음<br> | ||
+ | * <math>ac-b^2</math>와 <math>a</math>의 부호에 따라, 적당히 치환하여 위의 경우로 끌고가면 끝.[[오일러 치환|]]<br>[[오일러 치환|오일러치환]] 항목 참조<br> | ||
2010년 8월 20일 (금) 19:59 판
이 항목의 스프링노트 원문주소
개요
- \(R(x,\sqrt{1-x^2})\)의 적분
\(x=\cos u\) 치환을 사용하면, \(R'(\cos x, \sin x)\) 의 적분으로 변화 -
- \(R(x,\sqrt{x^2-1})\)의 적분
\(x=\cosh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화 -
- \(R(x,\sqrt{x^2+1})\)의 적분
\(x=\sinh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화 -
- \(R(x,\sqrt{ax^2+bx+c})\)의 적분
\(ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}\) 으로 쓴 다음 - \(ac-b^2\)와 \(a\)의 부호에 따라, 적당히 치환하여 위의 경우로 끌고가면 끝.[[오일러 치환|]]
오일러치환 항목 참조
삼각치환의 이론적 근거
- 유리함수의 부정적분은 초등함수로 쓸수 있기 때문에 삼각치환이 잘 작동한다고 볼 수 있다
- 삼각치환들이 잘 되는 이유는 '이차곡선은 유리함수로 매개화 가능' 하기 때문이다.
즉, \(y^2=ax^2+bx+c\) 라는 곡선을, 유리함수 \(f,g\)를 사용하여 \(x=f(t), y=g(t)\) 형태로 매개화할 수 있기 때문이다. - 삼각함수와 쌍곡함수들은 이차곡선을 매개화한다
\(R(x,y)\)는 \(x,y\)의 유리함수라고 가정
\(R(\cos x, \sin x)\)의 적분
- 다음과 같은 치환적분을 사용
\(t=\tan \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1+t^2}\), \(\sin x=\frac{2t}{1+t^2}\), \(\cos x=\frac{1-t^2}{1+t^2}\)
\(\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt\)
\(R(\cosh x, \sinh x)\)의 적분
- 다음과 같은 치환적분을 사용
\(t=\tanh \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1-t^2}\), \(\sinh x=\frac{2t}{1-t^2}\), \(\cosh x=\frac{1+t^2}{1-t^2}\)
\(\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt\)
재미있는 사실
역사
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
수학용어번역
참고할만한 자료
- http://ko.wikipedia.org/wiki/삼각치환
- http://en.wikipedia.org/wiki/trigonometric
- http://www.wolframalpha.com/input/?i=
- 네이버 오늘의과학
관련기사
- 네이버 뉴스 검색 (키워드 수정)