"타원함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
128번째 줄: | 128번째 줄: | ||
* http://en.wikipedia.org/wiki/elliptic_functions | * http://en.wikipedia.org/wiki/elliptic_functions | ||
* http://en.wikipedia.org/wiki/Weierstrass_elliptic_function | * http://en.wikipedia.org/wiki/Weierstrass_elliptic_function | ||
− | * http://www.wolframalpha.com/input/?i= | + | * http://www.wolframalpha.com/input/?i=elliptic+functions |
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics] : [http://eom.springer.de/E/e035470.htm Elliptic function] | * [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics] : [http://eom.springer.de/E/e035470.htm Elliptic function] | ||
− | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | + | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]<br> |
− | * [http:// | + | ** [http://dlmf.nist.gov/22 Jacobian Elliptic Functions] |
+ | ** [http://dlmf.nist.gov/23 Weierstrass Elliptic and Modular Functions] | ||
2010년 12월 24일 (금) 06:25 판
이 항목의 스프링노트 원문주소
개요
- 이중주기를 갖는 복소해석함수.
- 주기성을 갖는 삼각함수는 원 위에 정의된 함수로 이해할 수 있듯이, 타원함수는 토러스 위에 정의된 함수로 생각할 수 있음.
- 아벨과 자코비에 의해 체계화
- 자코비 세타함수를 통해서도 이론을 구성할 수 있음.
타원적분의 역함수
바이어슈트라스의 타원함수
- 바이어슈트라스의 타원함수 항목 참조
삼각함수와 타원함수
- 타원함수는 두 세타함수의 비(quotient)로 얻어짐.
- 이러한 관점에서 \(\sin z\), \(\cos z\) 를 타원함수에 비유할 수 있고, \(\tan z=\frac{\sin z}{\cos z}\) 를 타원함수에 비유할 수 있음.
- \(\sin (z+\pi)=-\sin z\), \(\cos (z+\pi)=-\cos z\) 는 \(\chi : \mathhbb{Z} \to \{\pm1\}\) 로 주어지는 modular form
- 타원함수의 무한곱표현과 유사한 \(\sin z\), \(\cos z\) 의 무한곱표현도 있음.
- 둘의 비를 취함으로써, \(\tan (z+\pi)=\tan z\) 주기함수를 얻는다.
상위 주제
하위페이지
재미있는 사실
관련된 고교수학 또는 대학수학
관련된 항목들
- 자코비 세타함수[[수학사연표 (역사)|]]
관련도서 및 추천도서
- Elliptic Functions
- J. V. Armitage, W. F. Eberlein
- 도서내검색
- 도서검색
관련논문
- In Search of the "Birthday" of Elliptic Functions - Bit by bit, the discoverers decided what it was they had discovered.
- Rice, Adrian, 48-57
- Translation of "Recherches sur les fonctions elliptiques."
- N.H.Abel
- 번역 Marcus Emmanuel Barnes
- 타원함수에 대한 간략한 역사
- APPLICATIONS OF ELLIPTIC FUNCTIONS IN CLASSICAL AND ALGEBRAIC GEOMETRY
- Snape, J. R. (2004).
사전 형태의 자료
- http://ko.wikipedia.org/wiki/타원함수
- http://en.wikipedia.org/wiki/elliptic_functions
- http://en.wikipedia.org/wiki/Weierstrass_elliptic_function
- http://www.wolframalpha.com/input/?i=elliptic+functions
- The Online Encyclopaedia of Mathematics : Elliptic function
- NIST Digital Library of Mathematical Functions