"평면의 방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소</h5>
+
==이 항목의 수학노트 원문주소==
  
 
 
 
 
5번째 줄: 5번째 줄:
 
 
 
 
  
==개요</h5>
+
==개요==
  
 
* <math>a,b,c,d\in\mathbb{R}</math>, 실수
 
* <math>a,b,c,d\in\mathbb{R}</math>, 실수
15번째 줄: 15번째 줄:
 
 
 
 
  
==주어진 세 점을 지나는 평면의 방정식</h5>
+
==주어진 세 점을 지나는 평면의 방정식==
  
 
* 세 점 P,Q,R 을 지나는 평면의 법선벡터는 평면에 놓인 두 벡터 <math>\overset{\rightharpoonup }{PQ}</math> 와 <math>\overset{\rightharpoonup }{PR}</math> 에 수직이 된다
 
* 세 점 P,Q,R 을 지나는 평면의 법선벡터는 평면에 놓인 두 벡터 <math>\overset{\rightharpoonup }{PQ}</math> 와 <math>\overset{\rightharpoonup }{PR}</math> 에 수직이 된다
24번째 줄: 24번째 줄:
 
 
 
 
  
==예</h5>
+
==예==
  
 
* P(-1, 2, 1), Q(-1, 6, 3), R(1, 1, 0) 을 지나는 평면의 방정식
 
* P(-1, 2, 1), Q(-1, 6, 3), R(1, 1, 0) 을 지나는 평면의 방정식
34번째 줄: 34번째 줄:
 
 
 
 
  
==역사</h5>
+
==역사==
  
 
 
 
 
45번째 줄: 45번째 줄:
 
 
 
 
  
==메모</h5>
+
==메모==
  
 
 
 
 
55번째 줄: 55번째 줄:
 
 
 
 
  
==관련된 항목들</h5>
+
==관련된 항목들==
  
 
* [[공간벡터]]
 
* [[공간벡터]]
64번째 줄: 64번째 줄:
 
 
 
 
  
==수학용어번역</h5>
+
==수학용어번역==
  
 
*  단어사전<br>
 
*  단어사전<br>
82번째 줄: 82번째 줄:
 
 
 
 
  
==매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxYTNtY0tGa3YtMGM/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxYTNtY0tGa3YtMGM/edit
97번째 줄: 97번째 줄:
 
 
 
 
  
==사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
109번째 줄: 109번째 줄:
 
 
 
 
  
==리뷰논문, 에세이, 강의노트</h5>
+
==리뷰논문, 에세이, 강의노트==
  
 
 
 
 
117번째 줄: 117번째 줄:
 
 
 
 
  
==관련논문</h5>
+
==관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
127번째 줄: 127번째 줄:
 
 
 
 
  
==관련도서</h5>
+
==관련도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=

2012년 11월 1일 (목) 13:14 판

이 항목의 수학노트 원문주소

 

 

개요

  • \(a,b,c,d\in\mathbb{R}\), 실수
  • 평면은 \(ax+by+cz+d=0\) , \((a,b,c)\neq \mathbf{0}\) 형태의 방정식을 만족시키는 점 \((x,y,z)\in\mathbb{R}^3\)들의 집합으로 얻어진다
  • 벡터 \(\mathbf{n}=(a,b,c)\) 는 평면에 수직인 벡터가 되며, 법선벡터라 부른다

 

 

주어진 세 점을 지나는 평면의 방정식

  • 세 점 P,Q,R 을 지나는 평면의 법선벡터는 평면에 놓인 두 벡터 \(\overset{\rightharpoonup }{PQ}\) 와 \(\overset{\rightharpoonup }{PR}\) 에 수직이 된다
  • 법선벡터를 이 두 벡터의 외적(cross product) \(\mathbf{n}=\overset{\rightharpoonup }{PQ}\times \overset{\rightharpoonup }{PR}\)  으로 얻을 수 있다

 

 

  • P(-1, 2, 1), Q(-1, 6, 3), R(1, 1, 0) 을 지나는 평면의 방정식
  • \(\overset{\rightharpoonup }{PQ}=(0,4,2)\) 와 \(\overset{\rightharpoonup }{PR}=(2, -1, -1)\)  로부터 법선벡터 \(\mathbf{n}=(-2,4,-8)\) 를 얻는다
  • 평면의 방정식은 \((-2,4,-8)\cdot\left((x,y,z)-(-1,2,1)\right)=0\), 즉 \(1+x-2 y+4 z=0\)

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서