"행렬식"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) (→관련논문) |
Pythagoras0 (토론 | 기여) |
||
13번째 줄: | 13번째 줄: | ||
:<math>\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i \sigma(i)}</math> | :<math>\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i \sigma(i)}</math> | ||
여기서 <math>S_n</math>은 [[대칭군 (symmetric group)]] | 여기서 <math>S_n</math>은 [[대칭군 (symmetric group)]] | ||
− | * 행렬 | + | * 행렬 <math>A=(a_{ij})</math>의 행렬식을 <math>|a_{i,j}|_{1\le i,j \le n}</math> 형태로 표현하기도 함 |
==예== | ==예== | ||
− | * | + | * <math>n=1</math> 일 때, |
− | + | :<math> | |
\begin{vmatrix} | \begin{vmatrix} | ||
a_{1,1} | a_{1,1} | ||
\end {vmatrix} | \end {vmatrix} | ||
=a_{1,1} | =a_{1,1} | ||
− | + | </math> | |
− | * | + | * <math>n=2</math>일 때, |
− | + | :<math> | |
\begin{vmatrix} | \begin{vmatrix} | ||
a_{1,1} & a_{1,2} \\ | a_{1,1} & a_{1,2} \\ | ||
31번째 줄: | 31번째 줄: | ||
\end {vmatrix} | \end {vmatrix} | ||
=a_{1,1} a_{2,2}-a_{1,2} a_{2,1} | =a_{1,1} a_{2,2}-a_{1,2} a_{2,1} | ||
− | + | </math> | |
* n=3일 때, | * n=3일 때, | ||
− | + | :<math> | |
\begin{vmatrix} | \begin{vmatrix} | ||
a_{1,1} & a_{1,2} & a_{1,3} \\ | a_{1,1} & a_{1,2} & a_{1,3} \\ | ||
40번째 줄: | 40번째 줄: | ||
\end {vmatrix} | \end {vmatrix} | ||
=a_{1,1} a_{2,2} a_{3,3}-a_{1,1} a_{2,3} a_{3,2},-a_{1,2} a_{2,1} a_{3,3}+a_{1,2} a_{2,3} a_{3,1}+a_{1,3} a_{2,1} a_{3,2}-a_{1,3} a_{2,2} a_{3,1} | =a_{1,1} a_{2,2} a_{3,3}-a_{1,1} a_{2,3} a_{3,2},-a_{1,2} a_{2,1} a_{3,3}+a_{1,2} a_{2,3} a_{3,1}+a_{1,3} a_{2,1} a_{3,2}-a_{1,3} a_{2,2} a_{3,1} | ||
− | + | </math> | |
* n=4일 때, | * n=4일 때, | ||
− | + | :<math> | |
\begin{vmatrix} | \begin{vmatrix} | ||
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ | a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ | ||
51번째 줄: | 51번째 줄: | ||
\end {vmatrix} | \end {vmatrix} | ||
=a_{1,4} a_{2,3} a_{3,2} a_{4,1}-a_{1,3} a_{2,4} a_{3,2} a_{4,1}-a_{1,4} a_{2,2} a_{3,3} a_{4,1}+a_{1,2} a_{2,4} a_{3,3} a_{4,1}+a_{1,3} a_{2,2} a_{3,4} a_{4,1}-a_{1,2} a_{2,3} a_{3,4} a_{4,1}-a_{1,4} a_{2,3} a_{3,1} a_{4,2}+a_{1,3} a_{2,4} a_{3,1} a_{4,2}+a_{1,4} a_{2,1} a_{3,3} a_{4,2}-a_{1,1} a_{2,4} a_{3,3} a_{4,2}-a_{1,3} a_{2,1} a_{3,4} a_{4,2}+a_{1,1} a_{2,3} a_{3,4} a_{4,2}+a_{1,4} a_{2,2} a_{3,1} a_{4,3}-a_{1,2} a_{2,4} a_{3,1} a_{4,3}-a_{1,4} a_{2,1} a_{3,2} a_{4,3}+a_{1,1} a_{2,4} a_{3,2} a_{4,3}+a_{1,2} a_{2,1} a_{3,4} a_{4,3}-a_{1,1} a_{2,2} a_{3,4} a_{4,3}-a_{1,3} a_{2,2} a_{3,1} a_{4,4}+a_{1,2} a_{2,3} a_{3,1} a_{4,4}+a_{1,3} a_{2,1} a_{3,2} a_{4,4}-a_{1,1} a_{2,3} a_{3,2} a_{4,4}-a_{1,2} a_{2,1} a_{3,3} a_{4,4}+a_{1,1} a_{2,2} a_{3,3} a_{4,4} | =a_{1,4} a_{2,3} a_{3,2} a_{4,1}-a_{1,3} a_{2,4} a_{3,2} a_{4,1}-a_{1,4} a_{2,2} a_{3,3} a_{4,1}+a_{1,2} a_{2,4} a_{3,3} a_{4,1}+a_{1,3} a_{2,2} a_{3,4} a_{4,1}-a_{1,2} a_{2,3} a_{3,4} a_{4,1}-a_{1,4} a_{2,3} a_{3,1} a_{4,2}+a_{1,3} a_{2,4} a_{3,1} a_{4,2}+a_{1,4} a_{2,1} a_{3,3} a_{4,2}-a_{1,1} a_{2,4} a_{3,3} a_{4,2}-a_{1,3} a_{2,1} a_{3,4} a_{4,2}+a_{1,1} a_{2,3} a_{3,4} a_{4,2}+a_{1,4} a_{2,2} a_{3,1} a_{4,3}-a_{1,2} a_{2,4} a_{3,1} a_{4,3}-a_{1,4} a_{2,1} a_{3,2} a_{4,3}+a_{1,1} a_{2,4} a_{3,2} a_{4,3}+a_{1,2} a_{2,1} a_{3,4} a_{4,3}-a_{1,1} a_{2,2} a_{3,4} a_{4,3}-a_{1,3} a_{2,2} a_{3,1} a_{4,4}+a_{1,2} a_{2,3} a_{3,1} a_{4,4}+a_{1,3} a_{2,1} a_{3,2} a_{4,4}-a_{1,1} a_{2,3} a_{3,2} a_{4,4}-a_{1,2} a_{2,1} a_{3,3} a_{4,4}+a_{1,1} a_{2,2} a_{3,3} a_{4,4} | ||
− | + | </math> | |
57번째 줄: | 57번째 줄: | ||
==예== | ==예== | ||
− | * [[반데몬드 행렬과 행렬식 (Vandermonde matrix)|반데몬드 행렬 (Vandermonde matrix)]] | + | * [[반데몬드 행렬과 행렬식 (Vandermonde matrix)|반데몬드 행렬 (Vandermonde matrix)]] |
76번째 줄: | 76번째 줄: | ||
==메모== | ==메모== | ||
− | * Háková, Lenka, and Agnieszka Tereszkiewicz. “On Immanant Functions Related to Weyl Groups of | + | * Háková, Lenka, and Agnieszka Tereszkiewicz. “On Immanant Functions Related to Weyl Groups of <math>A_n</math>.” Journal of Mathematical Physics 55, no. 11 (November 2014): 113509. doi:10.1063/1.4901556. |
* http://mathoverflow.net/questions/35988/why-were-matrix-determinants-once-such-a-big-deal | * http://mathoverflow.net/questions/35988/why-were-matrix-determinants-once-such-a-big-deal | ||
− | * 벡터의 스칼라 삼중곱:<math>\mathbf{a}\cdot(\mathbf{b}\times \mathbf{c})= \mathbf{b}\cdot(\mathbf{c}\times \mathbf{a})= \mathbf{c}\cdot(\mathbf{a}\times \mathbf{b}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{vmatrix}</math | + | * 벡터의 스칼라 삼중곱:<math>\mathbf{a}\cdot(\mathbf{b}\times \mathbf{c})= \mathbf{b}\cdot(\mathbf{c}\times \mathbf{a})= \mathbf{c}\cdot(\mathbf{a}\times \mathbf{b}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{vmatrix}</math> |
==관련된 항목들== | ==관련된 항목들== |
2020년 11월 13일 (금) 03:03 판
개요
- 선형대수학과 행렬이론의 주요 개념
- 유클리드 공간에서의 부피 개념
- 유클리드 평면의 2차원 벡터 두 개가 만드는 평행사변형의 넓이
- 유클리드 공간의 3차원 벡터 세 개가 만드는 평행육면체의 부피
- 교대 다중선형형식의 예
정의
- n x n 행렬 \(A=(a_{ij})_{1\le i,j \le n}\)에 대하여, 다음과 같이 행렬식을 정의
\[\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i \sigma(i)}\] 여기서 \(S_n\)은 대칭군 (symmetric group)
- 행렬 \(A=(a_{ij})\)의 행렬식을 \(|a_{i,j}|_{1\le i,j \le n}\) 형태로 표현하기도 함
예
- \(n=1\) 일 때,
\[ \begin{vmatrix} a_{1,1} \end {vmatrix} =a_{1,1} \]
- \(n=2\)일 때,
\[ \begin{vmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end {vmatrix} =a_{1,1} a_{2,2}-a_{1,2} a_{2,1} \]
- n=3일 때,
\[ \begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end {vmatrix} =a_{1,1} a_{2,2} a_{3,3}-a_{1,1} a_{2,3} a_{3,2},-a_{1,2} a_{2,1} a_{3,3}+a_{1,2} a_{2,3} a_{3,1}+a_{1,3} a_{2,1} a_{3,2}-a_{1,3} a_{2,2} a_{3,1} \]
- n=4일 때,
\[ \begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\ a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} \end {vmatrix} =a_{1,4} a_{2,3} a_{3,2} a_{4,1}-a_{1,3} a_{2,4} a_{3,2} a_{4,1}-a_{1,4} a_{2,2} a_{3,3} a_{4,1}+a_{1,2} a_{2,4} a_{3,3} a_{4,1}+a_{1,3} a_{2,2} a_{3,4} a_{4,1}-a_{1,2} a_{2,3} a_{3,4} a_{4,1}-a_{1,4} a_{2,3} a_{3,1} a_{4,2}+a_{1,3} a_{2,4} a_{3,1} a_{4,2}+a_{1,4} a_{2,1} a_{3,3} a_{4,2}-a_{1,1} a_{2,4} a_{3,3} a_{4,2}-a_{1,3} a_{2,1} a_{3,4} a_{4,2}+a_{1,1} a_{2,3} a_{3,4} a_{4,2}+a_{1,4} a_{2,2} a_{3,1} a_{4,3}-a_{1,2} a_{2,4} a_{3,1} a_{4,3}-a_{1,4} a_{2,1} a_{3,2} a_{4,3}+a_{1,1} a_{2,4} a_{3,2} a_{4,3}+a_{1,2} a_{2,1} a_{3,4} a_{4,3}-a_{1,1} a_{2,2} a_{3,4} a_{4,3}-a_{1,3} a_{2,2} a_{3,1} a_{4,4}+a_{1,2} a_{2,3} a_{3,1} a_{4,4}+a_{1,3} a_{2,1} a_{3,2} a_{4,4}-a_{1,1} a_{2,3} a_{3,2} a_{4,4}-a_{1,2} a_{2,1} a_{3,3} a_{4,4}+a_{1,1} a_{2,2} a_{3,3} a_{4,4} \]
예
역사
메모
- Háková, Lenka, and Agnieszka Tereszkiewicz. “On Immanant Functions Related to Weyl Groups of \(A_n\).” Journal of Mathematical Physics 55, no. 11 (November 2014): 113509. doi:10.1063/1.4901556.
- http://mathoverflow.net/questions/35988/why-were-matrix-determinants-once-such-a-big-deal
- 벡터의 스칼라 삼중곱\[\mathbf{a}\cdot(\mathbf{b}\times \mathbf{c})= \mathbf{b}\cdot(\mathbf{c}\times \mathbf{a})= \mathbf{c}\cdot(\mathbf{a}\times \mathbf{b}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{vmatrix}\]
관련된 항목들
- 행렬의 대각합 (trace)
- 벡터의 외적(cross product)
- 외대수(exterior algebra)와 겹선형대수(multilinear algebra)
- 파피안(Pfaffian)
수학용어번역
- 행렬식, determinant - 대한수학회 수학용어집
- parallelepiped - 대한수학회 수학용어집
- 평행육면체?
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxcE4yakhZTzBDYUE/edit
- http://stackoverflow.com/questions/tagged/determinants
사전 형태의 자료
- http://ko.wikipedia.org/wiki/행렬식
- http://en.wikipedia.org/wiki/Determinant
- http://en.wikipedia.org/wiki/Cauchy_matrix
리뷰, 에세이, 강의노트
- Abeles, Francine F. 2011. “Nineteenth Century Roots of Quasideterminants.” Linear Algebra and Its Applications 435 (5): 1019–1024. doi:10.1016/j.laa.2011.02.010.
- Krattenthaler, C. 2005. “Advanced Determinant Calculus: A Complement.” Linear Algebra and Its Applications 411: 68–166. doi:10.1016/j.laa.2005.06.042. http://arxiv.org/abs/math/0503507
- Krattenthaler, C. 1999. “Advanced Determinant Calculus.” Séminaire Lotharingien de Combinatoire 42: Art. B42q, 67 pp. (electronic). http://www.mat.univie.ac.at/~kratt/artikel/detsurv.html
- Brualdi, Richard A., and Hans Schneider. “Determinantal Identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley.” Linear Algebra and Its Applications 52–53 (July 1983): 769–91. doi:10.1016/0024-3795(83)80049-4.
관련논문
- http://arxiv.org/abs/1512.08747
- Jing, Naihuan, and Jian Zhang. “Quantum Hyperdetermiants and Hyper-Pfaffians.” arXiv:1412.3612 [math], December 11, 2014. http://arxiv.org/abs/1412.3612.