"구면좌표계"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
1번째 줄: | 1번째 줄: | ||
− | |||
− | + | ||
− | + | ==개요== | |
− | |||
− | |||
* <math>\rho ,\phi ,\theta</math><br> | * <math>\rho ,\phi ,\theta</math><br> | ||
13번째 줄: | 10번째 줄: | ||
* <math>\rho>0</math>, <math>0<\phi<2\pi</math>, <math>0<\theta<\pi</math><br> | * <math>\rho>0</math>, <math>0<\phi<2\pi</math>, <math>0<\theta<\pi</math><br> | ||
− | + | ||
− | + | ||
− | + | ==메트릭 텐서== | |
<math>\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & \rho ^2 \sin ^2(\theta ) & 0 \\ 0 & 0 & \rho ^2 \end{array} \right)</math> | <math>\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & \rho ^2 \sin ^2(\theta ) & 0 \\ 0 & 0 & \rho ^2 \end{array} \right)</math> | ||
− | + | ||
− | + | ||
− | + | ==라플라시안== | |
* [[라플라시안(Laplacian)|라플라시안]]<br><math>\Delta f = {1 \over r^2} {\partial \over \partial r} \left( r^2 {\partial f \over \partial r} \right) + {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}</math><br> | * [[라플라시안(Laplacian)|라플라시안]]<br><math>\Delta f = {1 \over r^2} {\partial \over \partial r} \left( r^2 {\partial f \over \partial r} \right) + {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}</math><br> | ||
− | + | ||
− | + | ||
− | + | ==크리스토펠 기호== | |
* [[크리스토펠 기호]] 항목 참조<math>\begin{array}{ll} \Gamma _{11}^1 & 0 \\ \Gamma _{12}^1 & 0 \\ \Gamma _{13}^1 & 0 \\ \Gamma _{21}^1 & 0 \\ \Gamma _{22}^1 & -\rho \sin ^2(\theta ) \\ \Gamma _{23}^1 & 0 \\ \Gamma _{31}^1 & 0 \\ \Gamma _{32}^1 & 0 \\ \Gamma _{33}^1 & -\rho \\ \Gamma _{11}^2 & 0 \\ \Gamma _{12}^2 & \frac{1}{\rho } \\ \Gamma _{13}^2 & 0 \\ \Gamma _{21}^2 & \frac{1}{\rho } \\ \Gamma _{22}^2 & 0 \\ \Gamma _{23}^2 & \cot (\theta ) \\ \Gamma _{31}^2 & 0 \\ \Gamma _{32}^2 & \cot (\theta ) \\ \Gamma _{33}^2 & 0 \\ \Gamma _{11}^3 & 0 \\ \Gamma _{12}^3 & 0 \\ \Gamma _{13}^3 & \frac{1}{\rho } \\ \Gamma _{21}^3 & 0 \\ \Gamma _{22}^3 & \sin (\theta ) (-\cos (\theta )) \\ \Gamma _{23}^3 & 0 \\ \Gamma _{31}^3 & \frac{1}{\rho } \\ \Gamma _{32}^3 & 0 \\ \Gamma _{33}^3 & 0 \end{array}</math> | * [[크리스토펠 기호]] 항목 참조<math>\begin{array}{ll} \Gamma _{11}^1 & 0 \\ \Gamma _{12}^1 & 0 \\ \Gamma _{13}^1 & 0 \\ \Gamma _{21}^1 & 0 \\ \Gamma _{22}^1 & -\rho \sin ^2(\theta ) \\ \Gamma _{23}^1 & 0 \\ \Gamma _{31}^1 & 0 \\ \Gamma _{32}^1 & 0 \\ \Gamma _{33}^1 & -\rho \\ \Gamma _{11}^2 & 0 \\ \Gamma _{12}^2 & \frac{1}{\rho } \\ \Gamma _{13}^2 & 0 \\ \Gamma _{21}^2 & \frac{1}{\rho } \\ \Gamma _{22}^2 & 0 \\ \Gamma _{23}^2 & \cot (\theta ) \\ \Gamma _{31}^2 & 0 \\ \Gamma _{32}^2 & \cot (\theta ) \\ \Gamma _{33}^2 & 0 \\ \Gamma _{11}^3 & 0 \\ \Gamma _{12}^3 & 0 \\ \Gamma _{13}^3 & \frac{1}{\rho } \\ \Gamma _{21}^3 & 0 \\ \Gamma _{22}^3 & \sin (\theta ) (-\cos (\theta )) \\ \Gamma _{23}^3 & 0 \\ \Gamma _{31}^3 & \frac{1}{\rho } \\ \Gamma _{32}^3 & 0 \\ \Gamma _{33}^3 & 0 \end{array}</math> | ||
− | + | ||
− | + | ||
− | + | ==리만 곡률 텐서== | |
* [[리만 곡률 텐서]]<br><math>\begin{array}{lll} \begin{array}{ll} R_{111}^1 & 0 \\ R_{112}^1 & 0 \\ R_{113}^1 & 0 \end{array} & \begin{array}{ll} R_{121}^1 & 0 \\ R_{122}^1 & 0 \\ R_{123}^1 & 0 \end{array} & \begin{array}{ll} R_{131}^1 & 0 \\ R_{132}^1 & 0 \\ R_{133}^1 & 0 \end{array} \\ \begin{array}{ll} R_{211}^1 & 0 \\ R_{212}^1 & 0 \\ R_{213}^1 & 0 \end{array} & \begin{array}{ll} R_{221}^1 & 0 \\ R_{222}^1 & 0 \\ R_{223}^1 & 0 \end{array} & \begin{array}{ll} R_{231}^1 & 0 \\ R_{232}^1 & 0 \\ R_{233}^1 & 0 \end{array} \\ \begin{array}{ll} R_{311}^1 & 0 \\ R_{312}^1 & 0 \\ R_{313}^1 & 0 \end{array} & \begin{array}{ll} R_{321}^1 & 0 \\ R_{322}^1 & 0 \\ R_{323}^1 & 0 \end{array} & \begin{array}{ll} R_{331}^1 & 0 \\ R_{332}^1 & 0 \\ R_{333}^1 & 0 \end{array} \\ \begin{array}{ll} R_{111}^2 & 0 \\ R_{112}^2 & 0 \\ R_{113}^2 & 0 \end{array} & \begin{array}{ll} R_{121}^2 & 0 \\ R_{122}^2 & 0 \\ R_{123}^2 & 0 \end{array} & \begin{array}{ll} R_{131}^2 & 0 \\ R_{132}^2 & 0 \\ R_{133}^2 & 0 \end{array} \\ \begin{array}{ll} R_{211}^2 & 0 \\ R_{212}^2 & 0 \\ R_{213}^2 & 0 \end{array} & \begin{array}{ll} R_{221}^2 & 0 \\ R_{222}^2 & 0 \\ R_{223}^2 & 0 \end{array} & \begin{array}{ll} R_{231}^2 & 0 \\ R_{232}^2 & 0 \\ R_{233}^2 & 0 \end{array} \\ \begin{array}{ll} R_{311}^2 & 0 \\ R_{312}^2 & 0 \\ R_{313}^2 & 0 \end{array} & \begin{array}{ll} R_{321}^2 & 0 \\ R_{322}^2 & 0 \\ R_{323}^2 & 0 \end{array} & \begin{array}{ll} R_{331}^2 & 0 \\ R_{332}^2 & 0 \\ R_{333}^2 & 0 \end{array} \\ \begin{array}{ll} R_{111}^3 & 0 \\ R_{112}^3 & 0 \\ R_{113}^3 & 0 \end{array} & \begin{array}{ll} R_{121}^3 & 0 \\ R_{122}^3 & 0 \\ R_{123}^3 & 0 \end{array} & \begin{array}{ll} R_{131}^3 & 0 \\ R_{132}^3 & 0 \\ R_{133}^3 & 0 \end{array} \\ \begin{array}{ll} R_{211}^3 & 0 \\ R_{212}^3 & 0 \\ R_{213}^3 & 0 \end{array} & \begin{array}{ll} R_{221}^3 & 0 \\ R_{222}^3 & 0 \\ R_{223}^3 & 0 \end{array} & \begin{array}{ll} R_{231}^3 & 0 \\ R_{232}^3 & 0 \\ R_{233}^3 & 0 \end{array} \\ \begin{array}{ll} R_{311}^3 & 0 \\ R_{312}^3 & 0 \\ R_{313}^3 & 0 \end{array} & \begin{array}{ll} R_{321}^3 & 0 \\ R_{322}^3 & 0 \\ R_{323}^3 & 0 \end{array} & \begin{array}{ll} R_{331}^3 & 0 \\ R_{332}^3 & 0 \\ R_{333}^3 & 0 \end{array} \end{array}</math><br> | * [[리만 곡률 텐서]]<br><math>\begin{array}{lll} \begin{array}{ll} R_{111}^1 & 0 \\ R_{112}^1 & 0 \\ R_{113}^1 & 0 \end{array} & \begin{array}{ll} R_{121}^1 & 0 \\ R_{122}^1 & 0 \\ R_{123}^1 & 0 \end{array} & \begin{array}{ll} R_{131}^1 & 0 \\ R_{132}^1 & 0 \\ R_{133}^1 & 0 \end{array} \\ \begin{array}{ll} R_{211}^1 & 0 \\ R_{212}^1 & 0 \\ R_{213}^1 & 0 \end{array} & \begin{array}{ll} R_{221}^1 & 0 \\ R_{222}^1 & 0 \\ R_{223}^1 & 0 \end{array} & \begin{array}{ll} R_{231}^1 & 0 \\ R_{232}^1 & 0 \\ R_{233}^1 & 0 \end{array} \\ \begin{array}{ll} R_{311}^1 & 0 \\ R_{312}^1 & 0 \\ R_{313}^1 & 0 \end{array} & \begin{array}{ll} R_{321}^1 & 0 \\ R_{322}^1 & 0 \\ R_{323}^1 & 0 \end{array} & \begin{array}{ll} R_{331}^1 & 0 \\ R_{332}^1 & 0 \\ R_{333}^1 & 0 \end{array} \\ \begin{array}{ll} R_{111}^2 & 0 \\ R_{112}^2 & 0 \\ R_{113}^2 & 0 \end{array} & \begin{array}{ll} R_{121}^2 & 0 \\ R_{122}^2 & 0 \\ R_{123}^2 & 0 \end{array} & \begin{array}{ll} R_{131}^2 & 0 \\ R_{132}^2 & 0 \\ R_{133}^2 & 0 \end{array} \\ \begin{array}{ll} R_{211}^2 & 0 \\ R_{212}^2 & 0 \\ R_{213}^2 & 0 \end{array} & \begin{array}{ll} R_{221}^2 & 0 \\ R_{222}^2 & 0 \\ R_{223}^2 & 0 \end{array} & \begin{array}{ll} R_{231}^2 & 0 \\ R_{232}^2 & 0 \\ R_{233}^2 & 0 \end{array} \\ \begin{array}{ll} R_{311}^2 & 0 \\ R_{312}^2 & 0 \\ R_{313}^2 & 0 \end{array} & \begin{array}{ll} R_{321}^2 & 0 \\ R_{322}^2 & 0 \\ R_{323}^2 & 0 \end{array} & \begin{array}{ll} R_{331}^2 & 0 \\ R_{332}^2 & 0 \\ R_{333}^2 & 0 \end{array} \\ \begin{array}{ll} R_{111}^3 & 0 \\ R_{112}^3 & 0 \\ R_{113}^3 & 0 \end{array} & \begin{array}{ll} R_{121}^3 & 0 \\ R_{122}^3 & 0 \\ R_{123}^3 & 0 \end{array} & \begin{array}{ll} R_{131}^3 & 0 \\ R_{132}^3 & 0 \\ R_{133}^3 & 0 \end{array} \\ \begin{array}{ll} R_{211}^3 & 0 \\ R_{212}^3 & 0 \\ R_{213}^3 & 0 \end{array} & \begin{array}{ll} R_{221}^3 & 0 \\ R_{222}^3 & 0 \\ R_{223}^3 & 0 \end{array} & \begin{array}{ll} R_{231}^3 & 0 \\ R_{232}^3 & 0 \\ R_{233}^3 & 0 \end{array} \\ \begin{array}{ll} R_{311}^3 & 0 \\ R_{312}^3 & 0 \\ R_{313}^3 & 0 \end{array} & \begin{array}{ll} R_{321}^3 & 0 \\ R_{322}^3 & 0 \\ R_{323}^3 & 0 \end{array} & \begin{array}{ll} R_{331}^3 & 0 \\ R_{332}^3 & 0 \\ R_{333}^3 & 0 \end{array} \end{array}</math><br> | ||
* covariant tensor<br><math>\begin{array}{lll} \begin{array}{ll} R_{1111} & 0 \\ R_{1112} & 0 \\ R_{1113} & 0 \end{array} & \begin{array}{ll} R_{1121} & 0 \\ R_{1122} & 0 \\ R_{1123} & 0 \end{array} & \begin{array}{ll} R_{1131} & 0 \\ R_{1132} & 0 \\ R_{1133} & 0 \end{array} \\ \begin{array}{ll} R_{1211} & 0 \\ R_{1212} & 0 \\ R_{1213} & 0 \end{array} & \begin{array}{ll} R_{1221} & 0 \\ R_{1222} & 0 \\ R_{1223} & 0 \end{array} & \begin{array}{ll} R_{1231} & 0 \\ R_{1232} & 0 \\ R_{1233} & 0 \end{array} \\ \begin{array}{ll} R_{1311} & 0 \\ R_{1312} & 0 \\ R_{1313} & 0 \end{array} & \begin{array}{ll} R_{1321} & 0 \\ R_{1322} & 0 \\ R_{1323} & 0 \end{array} & \begin{array}{ll} R_{1331} & 0 \\ R_{1332} & 0 \\ R_{1333} & 0 \end{array} \\ \begin{array}{ll} R_{2111} & 0 \\ R_{2112} & 0 \\ R_{2113} & 0 \end{array} & \begin{array}{ll} R_{2121} & 0 \\ R_{2122} & 0 \\ R_{2123} & 0 \end{array} & \begin{array}{ll} R_{2131} & 0 \\ R_{2132} & 0 \\ R_{2133} & 0 \end{array} \\ \begin{array}{ll} R_{2211} & 0 \\ R_{2212} & 0 \\ R_{2213} & 0 \end{array} & \begin{array}{ll} R_{2221} & 0 \\ R_{2222} & 0 \\ R_{2223} & 0 \end{array} & \begin{array}{ll} R_{2231} & 0 \\ R_{2232} & 0 \\ R_{2233} & 0 \end{array} \\ \begin{array}{ll} R_{2311} & 0 \\ R_{2312} & 0 \\ R_{2313} & 0 \end{array} & \begin{array}{ll} R_{2321} & 0 \\ R_{2322} & 0 \\ R_{2323} & 0 \end{array} & \begin{array}{ll} R_{2331} & 0 \\ R_{2332} & 0 \\ R_{2333} & 0 \end{array} \\ \begin{array}{ll} R_{3111} & 0 \\ R_{3112} & 0 \\ R_{3113} & 0 \end{array} & \begin{array}{ll} R_{3121} & 0 \\ R_{3122} & 0 \\ R_{3123} & 0 \end{array} & \begin{array}{ll} R_{3131} & 0 \\ R_{3132} & 0 \\ R_{3133} & 0 \end{array} \\ \begin{array}{ll} R_{3211} & 0 \\ R_{3212} & 0 \\ R_{3213} & 0 \end{array} & \begin{array}{ll} R_{3221} & 0 \\ R_{3222} & 0 \\ R_{3223} & 0 \end{array} & \begin{array}{ll} R_{3231} & 0 \\ R_{3232} & 0 \\ R_{3233} & 0 \end{array} \\ \begin{array}{ll} R_{3311} & 0 \\ R_{3312} & 0 \\ R_{3313} & 0 \end{array} & \begin{array}{ll} R_{3321} & 0 \\ R_{3322} & 0 \\ R_{3323} & 0 \end{array} & \begin{array}{ll} R_{3331} & 0 \\ R_{3332} & 0 \\ R_{3333} & 0 \end{array} \end{array}</math><br> | * covariant tensor<br><math>\begin{array}{lll} \begin{array}{ll} R_{1111} & 0 \\ R_{1112} & 0 \\ R_{1113} & 0 \end{array} & \begin{array}{ll} R_{1121} & 0 \\ R_{1122} & 0 \\ R_{1123} & 0 \end{array} & \begin{array}{ll} R_{1131} & 0 \\ R_{1132} & 0 \\ R_{1133} & 0 \end{array} \\ \begin{array}{ll} R_{1211} & 0 \\ R_{1212} & 0 \\ R_{1213} & 0 \end{array} & \begin{array}{ll} R_{1221} & 0 \\ R_{1222} & 0 \\ R_{1223} & 0 \end{array} & \begin{array}{ll} R_{1231} & 0 \\ R_{1232} & 0 \\ R_{1233} & 0 \end{array} \\ \begin{array}{ll} R_{1311} & 0 \\ R_{1312} & 0 \\ R_{1313} & 0 \end{array} & \begin{array}{ll} R_{1321} & 0 \\ R_{1322} & 0 \\ R_{1323} & 0 \end{array} & \begin{array}{ll} R_{1331} & 0 \\ R_{1332} & 0 \\ R_{1333} & 0 \end{array} \\ \begin{array}{ll} R_{2111} & 0 \\ R_{2112} & 0 \\ R_{2113} & 0 \end{array} & \begin{array}{ll} R_{2121} & 0 \\ R_{2122} & 0 \\ R_{2123} & 0 \end{array} & \begin{array}{ll} R_{2131} & 0 \\ R_{2132} & 0 \\ R_{2133} & 0 \end{array} \\ \begin{array}{ll} R_{2211} & 0 \\ R_{2212} & 0 \\ R_{2213} & 0 \end{array} & \begin{array}{ll} R_{2221} & 0 \\ R_{2222} & 0 \\ R_{2223} & 0 \end{array} & \begin{array}{ll} R_{2231} & 0 \\ R_{2232} & 0 \\ R_{2233} & 0 \end{array} \\ \begin{array}{ll} R_{2311} & 0 \\ R_{2312} & 0 \\ R_{2313} & 0 \end{array} & \begin{array}{ll} R_{2321} & 0 \\ R_{2322} & 0 \\ R_{2323} & 0 \end{array} & \begin{array}{ll} R_{2331} & 0 \\ R_{2332} & 0 \\ R_{2333} & 0 \end{array} \\ \begin{array}{ll} R_{3111} & 0 \\ R_{3112} & 0 \\ R_{3113} & 0 \end{array} & \begin{array}{ll} R_{3121} & 0 \\ R_{3122} & 0 \\ R_{3123} & 0 \end{array} & \begin{array}{ll} R_{3131} & 0 \\ R_{3132} & 0 \\ R_{3133} & 0 \end{array} \\ \begin{array}{ll} R_{3211} & 0 \\ R_{3212} & 0 \\ R_{3213} & 0 \end{array} & \begin{array}{ll} R_{3221} & 0 \\ R_{3222} & 0 \\ R_{3223} & 0 \end{array} & \begin{array}{ll} R_{3231} & 0 \\ R_{3232} & 0 \\ R_{3233} & 0 \end{array} \\ \begin{array}{ll} R_{3311} & 0 \\ R_{3312} & 0 \\ R_{3313} & 0 \end{array} & \begin{array}{ll} R_{3321} & 0 \\ R_{3322} & 0 \\ R_{3323} & 0 \end{array} & \begin{array}{ll} R_{3331} & 0 \\ R_{3332} & 0 \\ R_{3333} & 0 \end{array} \end{array}</math><br> | ||
− | + | ||
− | + | ||
− | + | ==역사== | |
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
− | + | ||
− | + | ||
− | + | ==메모== | |
− | + | ||
− | + | ||
− | + | ==관련된 항목들== | |
* [[구면조화함수(spherical harmonics)]]<br> | * [[구면조화함수(spherical harmonics)]]<br> | ||
70번째 줄: | 67번째 줄: | ||
* [[구면(sphere)]]<br> | * [[구면(sphere)]]<br> | ||
− | + | ||
− | + | ||
− | + | ==수학용어번역== | |
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
− | + | ||
− | + | ||
− | + | ==매스매티카 파일 및 계산 리소스== | |
* https://docs.google.com/file/d/0B8XXo8Tve1cxZEc2Q0c5M3p3QlU/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxZEc2Q0c5M3p3QlU/edit | ||
96번째 줄: | 93번째 줄: | ||
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | * [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | ||
− | + | ||
− | + | ||
− | + | ==사전 형태의 자료== | |
* [http://ko.wikipedia.org/wiki/%EA%B5%AC%EB%A9%B4%EC%A2%8C%ED%91%9C%EA%B3%84 http://ko.wikipedia.org/wiki/구면좌표계] | * [http://ko.wikipedia.org/wiki/%EA%B5%AC%EB%A9%B4%EC%A2%8C%ED%91%9C%EA%B3%84 http://ko.wikipedia.org/wiki/구면좌표계] | ||
110번째 줄: | 107번째 줄: | ||
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> | ||
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2012년 10월 20일 (토) 16:46 판
개요
- \(\rho ,\phi ,\theta\)
- \(x=\rho \cos\phi \, \sin\theta\)
- \(y=\rho \sin\phi \, \sin\theta\)
- \(z=\rho \cos\theta\)
- \(\rho>0\), \(0<\phi<2\pi\), \(0<\theta<\pi\)
메트릭 텐서
\(\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & \rho ^2 \sin ^2(\theta ) & 0 \\ 0 & 0 & \rho ^2 \end{array} \right)\)
라플라시안
- 라플라시안
\(\Delta f = {1 \over r^2} {\partial \over \partial r} \left( r^2 {\partial f \over \partial r} \right) + {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}\)
크리스토펠 기호
- 크리스토펠 기호 항목 참조\(\begin{array}{ll} \Gamma _{11}^1 & 0 \\ \Gamma _{12}^1 & 0 \\ \Gamma _{13}^1 & 0 \\ \Gamma _{21}^1 & 0 \\ \Gamma _{22}^1 & -\rho \sin ^2(\theta ) \\ \Gamma _{23}^1 & 0 \\ \Gamma _{31}^1 & 0 \\ \Gamma _{32}^1 & 0 \\ \Gamma _{33}^1 & -\rho \\ \Gamma _{11}^2 & 0 \\ \Gamma _{12}^2 & \frac{1}{\rho } \\ \Gamma _{13}^2 & 0 \\ \Gamma _{21}^2 & \frac{1}{\rho } \\ \Gamma _{22}^2 & 0 \\ \Gamma _{23}^2 & \cot (\theta ) \\ \Gamma _{31}^2 & 0 \\ \Gamma _{32}^2 & \cot (\theta ) \\ \Gamma _{33}^2 & 0 \\ \Gamma _{11}^3 & 0 \\ \Gamma _{12}^3 & 0 \\ \Gamma _{13}^3 & \frac{1}{\rho } \\ \Gamma _{21}^3 & 0 \\ \Gamma _{22}^3 & \sin (\theta ) (-\cos (\theta )) \\ \Gamma _{23}^3 & 0 \\ \Gamma _{31}^3 & \frac{1}{\rho } \\ \Gamma _{32}^3 & 0 \\ \Gamma _{33}^3 & 0 \end{array}\)
리만 곡률 텐서
- 리만 곡률 텐서
\(\begin{array}{lll} \begin{array}{ll} R_{111}^1 & 0 \\ R_{112}^1 & 0 \\ R_{113}^1 & 0 \end{array} & \begin{array}{ll} R_{121}^1 & 0 \\ R_{122}^1 & 0 \\ R_{123}^1 & 0 \end{array} & \begin{array}{ll} R_{131}^1 & 0 \\ R_{132}^1 & 0 \\ R_{133}^1 & 0 \end{array} \\ \begin{array}{ll} R_{211}^1 & 0 \\ R_{212}^1 & 0 \\ R_{213}^1 & 0 \end{array} & \begin{array}{ll} R_{221}^1 & 0 \\ R_{222}^1 & 0 \\ R_{223}^1 & 0 \end{array} & \begin{array}{ll} R_{231}^1 & 0 \\ R_{232}^1 & 0 \\ R_{233}^1 & 0 \end{array} \\ \begin{array}{ll} R_{311}^1 & 0 \\ R_{312}^1 & 0 \\ R_{313}^1 & 0 \end{array} & \begin{array}{ll} R_{321}^1 & 0 \\ R_{322}^1 & 0 \\ R_{323}^1 & 0 \end{array} & \begin{array}{ll} R_{331}^1 & 0 \\ R_{332}^1 & 0 \\ R_{333}^1 & 0 \end{array} \\ \begin{array}{ll} R_{111}^2 & 0 \\ R_{112}^2 & 0 \\ R_{113}^2 & 0 \end{array} & \begin{array}{ll} R_{121}^2 & 0 \\ R_{122}^2 & 0 \\ R_{123}^2 & 0 \end{array} & \begin{array}{ll} R_{131}^2 & 0 \\ R_{132}^2 & 0 \\ R_{133}^2 & 0 \end{array} \\ \begin{array}{ll} R_{211}^2 & 0 \\ R_{212}^2 & 0 \\ R_{213}^2 & 0 \end{array} & \begin{array}{ll} R_{221}^2 & 0 \\ R_{222}^2 & 0 \\ R_{223}^2 & 0 \end{array} & \begin{array}{ll} R_{231}^2 & 0 \\ R_{232}^2 & 0 \\ R_{233}^2 & 0 \end{array} \\ \begin{array}{ll} R_{311}^2 & 0 \\ R_{312}^2 & 0 \\ R_{313}^2 & 0 \end{array} & \begin{array}{ll} R_{321}^2 & 0 \\ R_{322}^2 & 0 \\ R_{323}^2 & 0 \end{array} & \begin{array}{ll} R_{331}^2 & 0 \\ R_{332}^2 & 0 \\ R_{333}^2 & 0 \end{array} \\ \begin{array}{ll} R_{111}^3 & 0 \\ R_{112}^3 & 0 \\ R_{113}^3 & 0 \end{array} & \begin{array}{ll} R_{121}^3 & 0 \\ R_{122}^3 & 0 \\ R_{123}^3 & 0 \end{array} & \begin{array}{ll} R_{131}^3 & 0 \\ R_{132}^3 & 0 \\ R_{133}^3 & 0 \end{array} \\ \begin{array}{ll} R_{211}^3 & 0 \\ R_{212}^3 & 0 \\ R_{213}^3 & 0 \end{array} & \begin{array}{ll} R_{221}^3 & 0 \\ R_{222}^3 & 0 \\ R_{223}^3 & 0 \end{array} & \begin{array}{ll} R_{231}^3 & 0 \\ R_{232}^3 & 0 \\ R_{233}^3 & 0 \end{array} \\ \begin{array}{ll} R_{311}^3 & 0 \\ R_{312}^3 & 0 \\ R_{313}^3 & 0 \end{array} & \begin{array}{ll} R_{321}^3 & 0 \\ R_{322}^3 & 0 \\ R_{323}^3 & 0 \end{array} & \begin{array}{ll} R_{331}^3 & 0 \\ R_{332}^3 & 0 \\ R_{333}^3 & 0 \end{array} \end{array}\) - covariant tensor
\(\begin{array}{lll} \begin{array}{ll} R_{1111} & 0 \\ R_{1112} & 0 \\ R_{1113} & 0 \end{array} & \begin{array}{ll} R_{1121} & 0 \\ R_{1122} & 0 \\ R_{1123} & 0 \end{array} & \begin{array}{ll} R_{1131} & 0 \\ R_{1132} & 0 \\ R_{1133} & 0 \end{array} \\ \begin{array}{ll} R_{1211} & 0 \\ R_{1212} & 0 \\ R_{1213} & 0 \end{array} & \begin{array}{ll} R_{1221} & 0 \\ R_{1222} & 0 \\ R_{1223} & 0 \end{array} & \begin{array}{ll} R_{1231} & 0 \\ R_{1232} & 0 \\ R_{1233} & 0 \end{array} \\ \begin{array}{ll} R_{1311} & 0 \\ R_{1312} & 0 \\ R_{1313} & 0 \end{array} & \begin{array}{ll} R_{1321} & 0 \\ R_{1322} & 0 \\ R_{1323} & 0 \end{array} & \begin{array}{ll} R_{1331} & 0 \\ R_{1332} & 0 \\ R_{1333} & 0 \end{array} \\ \begin{array}{ll} R_{2111} & 0 \\ R_{2112} & 0 \\ R_{2113} & 0 \end{array} & \begin{array}{ll} R_{2121} & 0 \\ R_{2122} & 0 \\ R_{2123} & 0 \end{array} & \begin{array}{ll} R_{2131} & 0 \\ R_{2132} & 0 \\ R_{2133} & 0 \end{array} \\ \begin{array}{ll} R_{2211} & 0 \\ R_{2212} & 0 \\ R_{2213} & 0 \end{array} & \begin{array}{ll} R_{2221} & 0 \\ R_{2222} & 0 \\ R_{2223} & 0 \end{array} & \begin{array}{ll} R_{2231} & 0 \\ R_{2232} & 0 \\ R_{2233} & 0 \end{array} \\ \begin{array}{ll} R_{2311} & 0 \\ R_{2312} & 0 \\ R_{2313} & 0 \end{array} & \begin{array}{ll} R_{2321} & 0 \\ R_{2322} & 0 \\ R_{2323} & 0 \end{array} & \begin{array}{ll} R_{2331} & 0 \\ R_{2332} & 0 \\ R_{2333} & 0 \end{array} \\ \begin{array}{ll} R_{3111} & 0 \\ R_{3112} & 0 \\ R_{3113} & 0 \end{array} & \begin{array}{ll} R_{3121} & 0 \\ R_{3122} & 0 \\ R_{3123} & 0 \end{array} & \begin{array}{ll} R_{3131} & 0 \\ R_{3132} & 0 \\ R_{3133} & 0 \end{array} \\ \begin{array}{ll} R_{3211} & 0 \\ R_{3212} & 0 \\ R_{3213} & 0 \end{array} & \begin{array}{ll} R_{3221} & 0 \\ R_{3222} & 0 \\ R_{3223} & 0 \end{array} & \begin{array}{ll} R_{3231} & 0 \\ R_{3232} & 0 \\ R_{3233} & 0 \end{array} \\ \begin{array}{ll} R_{3311} & 0 \\ R_{3312} & 0 \\ R_{3313} & 0 \end{array} & \begin{array}{ll} R_{3321} & 0 \\ R_{3322} & 0 \\ R_{3323} & 0 \end{array} & \begin{array}{ll} R_{3331} & 0 \\ R_{3332} & 0 \\ R_{3333} & 0 \end{array} \end{array}\)
역사
메모
관련된 항목들
수학용어번역
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxZEc2Q0c5M3p3QlU/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/구면좌표계
- http://en.wikipedia.org/wiki/Spherical_coordinate_system
- http://en.wikipedia.org/wiki/Polar_coordinate_system
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences