"구면(sphere)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
 
(같은 사용자의 중간 판 17개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[구면(sphere)]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
 
* [[구면기하학]]의 모델
 
* [[구면기하학]]의 모델
  
 
 
  
 
 
  
 
==매개화==
 
==매개화==
  
 
* 3차원상의 반지름이 R인 구면 <math> x^2+y^2+z^2 = R^2</math>
 
* 3차원상의 반지름이 R인 구면 <math> x^2+y^2+z^2 = R^2</math>
* 매개화<br><math>X(u,v)=R(\cos u \sin v, \sin u \sin v, \cos v)</math><br><math>0<u<2\pi</math>, <math>0<v<\pi</math><br>
+
* 매개화:<math>X(u,v)=R(\cos u \sin v, \sin u \sin v, \cos v)</math>:<math>0<u<2\pi,0<v<\pi</math>
* <math>X_u=R(- \sin u  \sin v , \cos u  \sin v ,0)</math><br><math>X_v=R( \cos u  \cos v , \sin u  \cos v ,-\sin v)</math><br><math>N=(-\cos u \sin v, -\sin u \sin v, -\cos v)</math><br><math>X_{uu}=R(-\cos u \sin v , -\sin u \sin v ,0)</math><br><math>X_{uv}=R(-\cos  v  \sin  u  , \cos  u  \cos  v  , 0)</math><br><math>X_{vv}=R(-  \cos u \sin v , - \sin u \sin v , -  \cos v )</math><br>
+
* 미분
 +
:<math>X_u=R(- \sin u  \sin v , \cos u  \sin v ,0)</math>:<math>X_v=R( \cos u  \cos v , \sin u  \cos v ,-\sin v)</math>:<math>N=(-\cos u \sin v, -\sin u \sin v, -\cos v)</math>:<math>X_{uu}=R(-\cos u \sin v , -\sin u \sin v ,0)</math>:<math>X_{uv}=R(-\cos  v  \sin  u  , \cos  u  \cos  v  , 0)</math>:<math>X_{vv}=R(-  \cos u \sin v , - \sin u \sin v , -  \cos v )</math>
  
 
 
  
 
 
  
 
==제1기본형식 (메트릭 텐서)==
 
==제1기본형식 (메트릭 텐서)==
31번째 줄: 20번째 줄:
 
* <math>G=R^2</math>
 
* <math>G=R^2</math>
  
 
 
  
 
 
  
 
==크리스토펠 기호==
 
==크리스토펠 기호==
  
* [[크리스토펠 기호]] 항목 참조<br><math>\Gamma^1_{11}=0</math><br><math>\Gamma^1_{12}=\cot v</math><br><math>\Gamma^1_{21}=\cot v</math><br><math>\Gamma^1_{22}=0</math><br><math>\Gamma^2_{11}=-\sin v \cos v</math><br><math>\Gamma^2_{12}=0</math><br><math>\Gamma^2_{21}=0</math><br><math>\Gamma^2_{22}=0</math><br>
+
* [[크리스토펠 기호]] 항목 참조:<math>\Gamma^1_{11}=0</math>:<math>\Gamma^1_{12}=\cot v</math>:<math>\Gamma^1_{21}=\cot v</math>:<math>\Gamma^1_{22}=0</math>:<math>\Gamma^2_{11}=-\sin v \cos v</math>:<math>\Gamma^2_{12}=0</math>:<math>\Gamma^2_{21}=0</math>:<math>\Gamma^2_{22}=0</math>
  
 
 
  
 
+
 
 +
  
 
==리만 곡률 텐서==
 
==리만 곡률 텐서==
  
* [[리만 곡률 텐서]]<br><math>\begin{array}{ll}  \begin{array}{ll}  R_{111}^1 & 0 \\  R_{112}^1 & 0 \end{array}  &  \begin{array}{ll}  R_{121}^1 & 0 \\  R_{122}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^1 & 0 \\  R_{212}^1 & 1 \end{array}  &  \begin{array}{ll}  R_{221}^1 & -1 \\  R_{222}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{111}^2 & 0 \\  R_{112}^2 & -\sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{121}^2 & \sin ^2(v) \\  R_{122}^2 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^2 & 0 \\  R_{212}^2 & 0 \end{array}  &  \begin{array}{ll}  R_{221}^2 & 0 \\  R_{222}^2 & 0 \end{array}  \end{array}</math><br>
+
* [[리만 곡률 텐서]]:<math>\begin{array}{ll}  \begin{array}{ll}  R_{111}^1 & 0 \\  R_{112}^1 & 0 \end{array}  &  \begin{array}{ll}  R_{121}^1 & 0 \\  R_{122}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^1 & 0 \\  R_{212}^1 & 1 \end{array}  &  \begin{array}{ll}  R_{221}^1 & -1 \\  R_{222}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{111}^2 & 0 \\  R_{112}^2 & -\sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{121}^2 & \sin ^2(v) \\  R_{122}^2 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^2 & 0 \\  R_{212}^2 & 0 \end{array}  &  \begin{array}{ll}  R_{221}^2 & 0 \\  R_{222}^2 & 0 \end{array}  \end{array}</math>
*  covariant tensor<br><math>\begin{array}{ll}  \begin{array}{ll}  R_{1111} & 0 \\  R_{1112} & 0 \end{array}  &  \begin{array}{ll}  R_{1121} & 0 \\  R_{1122} & 0 \end{array}  \\  \begin{array}{ll}  R_{1211} & 0 \\  R_{1212} & R^2 \sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{1221} & -R^2 \sin ^2(v) \\  R_{1222} & 0 \end{array}  \\  \begin{array}{ll}  R_{2111} & 0 \\  R_{2112} & -R^2 \sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{2121} & R^2 \sin ^2(v) \\  R_{2122} & 0 \end{array}  \\  \begin{array}{ll}  R_{2211} & 0 \\  R_{2212} & 0 \end{array}  &  \begin{array}{ll}  R_{2221} & 0 \\  R_{2222} & 0 \end{array}  \end{array}</math><br>
+
*  covariant tensor:<math>\begin{array}{ll}  \begin{array}{ll}  R_{1111} & 0 \\  R_{1112} & 0 \end{array}  &  \begin{array}{ll}  R_{1121} & 0 \\  R_{1122} & 0 \end{array}  \\  \begin{array}{ll}  R_{1211} & 0 \\  R_{1212} & R^2 \sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{1221} & -R^2 \sin ^2(v) \\  R_{1222} & 0 \end{array}  \\  \begin{array}{ll}  R_{2111} & 0 \\  R_{2112} & -R^2 \sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{2121} & R^2 \sin ^2(v) \\  R_{2122} & 0 \end{array}  \\  \begin{array}{ll}  R_{2211} & 0 \\  R_{2212} & 0 \end{array}  &  \begin{array}{ll}  R_{2221} & 0 \\  R_{2222} & 0 \end{array}  \end{array}</math>
  
 
+
  
 
+
  
 
==측지선==
 
==측지선==
  
* [[측지선]] 이 만족시키는 미분방정식<br><math>\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0</math><br>
+
* [[측지선]] 만족시키는 미분방정식
* 풀어쓰면, <br><math>\frac{d^2 u}{dt^2} + 2\Gamma^{1}_{~1 2 }\frac{du }{dt}\frac{dv }{dt} = 0</math><br><math>\frac{d^2 v}{dt^2} + \Gamma^{2}_{~1 1 }\frac{du }{dt}\frac{du }{dt} = 0</math><br>
+
:<math>\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0</math>
 +
* 풀어쓰면,
 +
:<math>\frac{d^2 u}{dt^2} + \Gamma^{1}_{~1 2 }\frac{du }{dt}\frac{dv }{dt} = 0</math>
 +
:<math>\frac{d^2 v}{dt^2} + \Gamma^{2}_{~1 1 }\frac{du }{dt}\frac{du }{dt} = 0</math>
  
 
+
  
 
+
  
 
==가우스곡률==
 
==가우스곡률==
  
* [[가우스 곡률|가우스곡률]] 항목 참조<br><math>K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)</math><br>
+
* [[가우스 곡률|가우스곡률]] 항목 참조:<math>K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)</math>
*  반지름 R인 구면의 가우스곡률<br><math>K=\frac{1}{R^2}</math><br>
+
*  반지름 R인 구면의 가우스곡률:<math>K=\frac{1}{R^2}</math>
  
 
+
  
 
+
  
 
==라플라시안==
 
==라플라시안==
  
*  위의 좌표계에서 <math>u=\phi,v=\theta</math> 로 생각하자.<br>
+
*  위의 좌표계에서 <math>u=\phi,v=\theta</math> 로 생각하자.
* [[라플라시안(Laplacian)|라플라시안]]<br><math>\Delta f = {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}={1 \over r^2 }({\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta} {\partial^2 f \over \partial \phi^2})</math><br>
+
* [[라플라시안(Laplacian)|라플라시안]]:<math>\Delta f = {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}={1 \over r^2 }({\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta} {\partial^2 f \over \partial \phi^2})</math>
  
 
+
  
 
+
 
 
==역사==
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
*  
 
 
 
 
 
 
 
 
 
  
 
==메모==
 
==메모==
95번째 줄: 73번째 줄:
 
* http://users-phys.au.dk/fedorov/nucltheo/GTR/09/note6.pdf
 
* http://users-phys.au.dk/fedorov/nucltheo/GTR/09/note6.pdf
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
106번째 줄: 84번째 줄:
 
* [[구면좌표계]]
 
* [[구면좌표계]]
  
 
+
  
 
+
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
114번째 줄: 92번째 줄:
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxYWZjZjFkNWEtNTVlNC00OTVjLWJhMDMtODc1NjgyMGQ1OTA5&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxYWZjZjFkNWEtNTVlNC00OTVjLWJhMDMtODc1NjgyMGQ1OTA5&sort=name&layout=list&num=50
 
* http://www.wolframalpha.com/input/?i=sphere
 
* http://www.wolframalpha.com/input/?i=sphere
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
 
 
 
  
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
131번째 줄: 101번째 줄:
 
* http://mathworld.wolfram.com/GreatCircle.html
 
* http://mathworld.wolfram.com/GreatCircle.html
  
 
 
  
 
+
==리뷰, 에세이, 강의노트==
 +
* [https://www.maths.unsw.edu.au/about/distributing-points-sphere Distributing points on the sphere]
 +
 
  
 
==관련논문==
 
==관련논문==
 +
* Neutsch, Wolfram. “Optimal Spherical Designs and Numerical Integration on the Sphere.” Journal of Computational Physics 51, no. 2 (August 1983): 313–25. doi:10.1016/0021-9991(83)90095-5.
 +
 +
[[분류:미분기하학]]
 +
[[분류:곡면]]
 +
[[분류:구면기하학]]
  
* http://www.jstor.org/action/doBasicSearch?Query=
+
==메타데이터==
* http://dx.doi.org/
+
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q12507 Q12507]
 +
===Spacy 패턴 목록===
 +
* [{'LEMMA': 'sphere'}]
 +
* [{'LEMMA': '2-sphere'}]

2021년 2월 17일 (수) 03:59 기준 최신판

개요


매개화

  • 3차원상의 반지름이 R인 구면 \( x^2+y^2+z^2 = R^2\)
  • 매개화\[X(u,v)=R(\cos u \sin v, \sin u \sin v, \cos v)\]\[0<u<2\pi,0<v<\pi\]
  • 미분

\[X_u=R(- \sin u \sin v , \cos u \sin v ,0)\]\[X_v=R( \cos u \cos v , \sin u \cos v ,-\sin v)\]\[N=(-\cos u \sin v, -\sin u \sin v, -\cos v)\]\[X_{uu}=R(-\cos u \sin v , -\sin u \sin v ,0)\]\[X_{uv}=R(-\cos v \sin u , \cos u \cos v , 0)\]\[X_{vv}=R(- \cos u \sin v , - \sin u \sin v , - \cos v )\]


제1기본형식 (메트릭 텐서)

  • \(E=R^2\sin^2 v\)
  • \(F=0\)
  • \(G=R^2\)


크리스토펠 기호

  • 크리스토펠 기호 항목 참조\[\Gamma^1_{11}=0\]\[\Gamma^1_{12}=\cot v\]\[\Gamma^1_{21}=\cot v\]\[\Gamma^1_{22}=0\]\[\Gamma^2_{11}=-\sin v \cos v\]\[\Gamma^2_{12}=0\]\[\Gamma^2_{21}=0\]\[\Gamma^2_{22}=0\]



리만 곡률 텐서

  • 리만 곡률 텐서\[\begin{array}{ll} \begin{array}{ll} R_{111}^1 & 0 \\ R_{112}^1 & 0 \end{array} & \begin{array}{ll} R_{121}^1 & 0 \\ R_{122}^1 & 0 \end{array} \\ \begin{array}{ll} R_{211}^1 & 0 \\ R_{212}^1 & 1 \end{array} & \begin{array}{ll} R_{221}^1 & -1 \\ R_{222}^1 & 0 \end{array} \\ \begin{array}{ll} R_{111}^2 & 0 \\ R_{112}^2 & -\sin ^2(v) \end{array} & \begin{array}{ll} R_{121}^2 & \sin ^2(v) \\ R_{122}^2 & 0 \end{array} \\ \begin{array}{ll} R_{211}^2 & 0 \\ R_{212}^2 & 0 \end{array} & \begin{array}{ll} R_{221}^2 & 0 \\ R_{222}^2 & 0 \end{array} \end{array}\]
  • covariant tensor\[\begin{array}{ll} \begin{array}{ll} R_{1111} & 0 \\ R_{1112} & 0 \end{array} & \begin{array}{ll} R_{1121} & 0 \\ R_{1122} & 0 \end{array} \\ \begin{array}{ll} R_{1211} & 0 \\ R_{1212} & R^2 \sin ^2(v) \end{array} & \begin{array}{ll} R_{1221} & -R^2 \sin ^2(v) \\ R_{1222} & 0 \end{array} \\ \begin{array}{ll} R_{2111} & 0 \\ R_{2112} & -R^2 \sin ^2(v) \end{array} & \begin{array}{ll} R_{2121} & R^2 \sin ^2(v) \\ R_{2122} & 0 \end{array} \\ \begin{array}{ll} R_{2211} & 0 \\ R_{2212} & 0 \end{array} & \begin{array}{ll} R_{2221} & 0 \\ R_{2222} & 0 \end{array} \end{array}\]



측지선

  • 측지선 이 만족시키는 미분방정식

\[\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0\]

  • 풀어쓰면,

\[\frac{d^2 u}{dt^2} + \Gamma^{1}_{~1 2 }\frac{du }{dt}\frac{dv }{dt} = 0\] \[\frac{d^2 v}{dt^2} + \Gamma^{2}_{~1 1 }\frac{du }{dt}\frac{du }{dt} = 0\]



가우스곡률

  • 가우스곡률 항목 참조\[K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)\]
  • 반지름 R인 구면의 가우스곡률\[K=\frac{1}{R^2}\]



라플라시안

  • 위의 좌표계에서 \(u=\phi,v=\theta\) 로 생각하자.
  • 라플라시안\[\Delta f = {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}={1 \over r^2 }({\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta} {\partial^2 f \over \partial \phi^2})\]



메모



관련된 항목들



매스매티카 파일 및 계산 리소스


사전 형태의 자료


리뷰, 에세이, 강의노트


관련논문

  • Neutsch, Wolfram. “Optimal Spherical Designs and Numerical Integration on the Sphere.” Journal of Computational Physics 51, no. 2 (August 1983): 313–25. doi:10.1016/0021-9991(83)90095-5.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'sphere'}]
  • [{'LEMMA': '2-sphere'}]