"자코비 세타함수"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) (→관련도서) |
|||
(사용자 3명의 중간 판 56개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | < | + | ==개요== |
+ | * <math>q=e^{2\pi i \tau}</math>, <math>x=e^{\pi i \tau}</math>라 두자 | ||
+ | * 세타함수의 정의 (spectral decomposition of heat kernel) | ||
+ | :<math>\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}=\sum_{n=-\infty}^\infty x^{n^2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}</math> | ||
+ | :<math>\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}</math> | ||
+ | :<math>\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}</math> | ||
− | + | * 자코비는 이를 통하여 [[타원함수]]론을 전개 | |
− | + | * 응용으로 [[자코비의 네 제곱수 정리]], [[퐁슬레의 정리(Poncelet's porism)|퐁슬레의 정리]] 등의 증명에 사용됨 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * 자코비는 이를 | ||
− | * | ||
* [[모듈라 형식(modular forms)]]의 예 | * [[모듈라 형식(modular forms)]]의 예 | ||
− | * [[제1종타원적분 K (complete elliptic integral of the first kind)]], | + | * [[제1종타원적분 K (complete elliptic integral of the first kind)]], [[타원적분의 singular value k]]와 밀접한 관계를 가짐:<math>K(k(\tau)) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}} = \frac{\pi}{2}\theta_3^2(\tau)</math>:<math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math> |
− | + | ||
− | + | ||
− | + | ||
− | + | ==많이 사용되는 또다른 정의== | |
− | * 전통적인 세타함수 | + | * 전통적인 세타함수:<math>\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}</math> |
− | * 현대의 수학문헌에서는 다음과 같은 함수도 같은 이름으로 자주 사용됨 | + | * 현대의 수학문헌에서는 다음과 같은 함수도 같은 이름으로 자주 사용됨:<math>\Theta(\tau)=\sum_{n=-\infty}^\infty q^{n^2}= \sum_{n=-\infty}^\infty e^{2\pi i n^2\tau}\,\quad (q=e^{2\pi i \tau})</math> |
− | * <math>\Theta(\tau)</math> | + | * <math>\Theta(\tau)</math> 는 <math>\Gamma_0(4)</math>에 대한 모듈라 형식이 됨:<math>\Gamma_0(4) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{4} \right\}</math> |
− | |||
− | |||
− | + | ==여러가지 공식들== | |
+ | * <math>\theta_2^4(q)+\theta_4^4(q)=\theta_3^4(q)</math> | ||
+ | * <math>\theta_3^2(q^2)+\theta_2^2(q^2)=\theta_3^2(q)</math> | ||
+ | * <math>\theta_3^2(q^2)-\theta_2^2(q^2)=\theta_3^2(q)</math> | ||
− | |||
− | + | ||
− | + | ==세타함수의 모듈라 성질== | |
− | <math>\ | + | ;정리 |
+ | 세타함수는 다음의 변환 성질을 만족한다 | ||
+ | :<math>\theta(-\frac{1}{\tau})=\sqrt{\frac{\tau}{i}} \theta({\tau})=\sqrt{-i\tau}\theta({\tau})</math> 여기서 <math>-\frac{\pi}{4}<\arg \sqrt{-i\tau}<\frac{\pi}{4}</math> 이 되도록 선택 | ||
− | |||
− | + | ;증명 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[포아송의 덧셈 공식]]을 사용한다. | [[포아송의 덧셈 공식]]을 사용한다. | ||
+ | :<math>\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)</math> | ||
− | + | <math>f(x)=e^{\pi i x^2\tau}</math>의 [[푸리에 변환]]은 다음과 같이 주어진다. | |
− | + | :<math>\hat{f}(\xi)=\sqrt{\frac{i}{\tau}}e^{-\pi i\frac{\xi^2}{\tau}}</math> | |
− | <math>f(x)=e^{\pi i x^2\tau</math> | + | 따라서 |
− | + | :<math>\theta(\tau)= \sum_{n\in \mathbb Z} \exp(\pi i n^2\tau)=\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)=\sqrt{\frac{i}{\tau}}\sum_{n\in \mathbb Z}e^{-\pi i n^2 \frac{1}{\tau}}=\sqrt{\frac{i}{\tau}}\theta(-\frac{1}{\tau})</math> ■ | |
− | <math>\hat{f}(\xi)=\sqrt{\frac{i}{\tau}}e^{-\pi i\frac{\xi^2}{\tau}</math> | ||
− | |||
− | <math>\theta(\tau)= \sum_{\in \mathbb Z} \exp(\pi i n^2\tau)=\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)=\sqrt{\frac{i}{\tau}}\sum_{n\in \mathbb Z}e^{-\pi i n^2 \frac{1}{\tau}}=\sqrt{\frac{i}{\tau}}\theta(-\frac{1}{\tau})</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | * <math>\tau=iy, y>0</math> 으로 쓰면, 다음과 같이 표현된다 :<math>\theta(\frac{i}{y})=\sqrt{y} \theta({iy})</math> | |
+ | * <math>\Gamma(2)</math>에 대한 모듈라 형식이 됨:<math>\Gamma(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{2} \right\}</math> | ||
− | + | ===더 일반적인 모듈라 변환=== | |
+ | 더 일반적으로, <math>ad-bc=1</math>, <math>ab\equiv 0\pmod 2</math>, <math>cd\equiv 0\pmod 2</math>, <math>c>0</math>인 정수 a,b,c,d에 대하여 다음이 성립한다 | ||
+ | :<math>\theta \left( \frac {a\tau+b} {c\tau+d}\right) =\epsilon(c,d) \sqrt{-i\left(c\tau+d\right)}\theta(\tau) \label{mod}</math> | ||
+ | 여기서 <math>-\frac{\pi}{4}<\arg \sqrt{-i(c\tau+d)}<\frac{\pi}{4}</math> 이 되도록 선택하며 (<math>\Re\left(-i(c\tau+d)\right) >0</math>이다), | ||
+ | :<math>\epsilon(c,d)=\frac{\sqrt{c}}{S(-d,c)}</math> | ||
+ | 이고 <math>S(p,q)=\sum_{r=0}^{q-1} e^{\pi i pr^2/q}</math>는 [[가우스 합]]. | ||
− | < | + | ==cusp에서의 행동과 가우스합== |
+ | ===0 근방에서의 행동=== | ||
+ | * <math>y>0</math>가 매우 작을 때, | ||
+ | :<math>\theta(iy)\sim \frac{1}{\sqrt{y}}</math> | ||
+ | (증명) :<math>\theta(\frac{i}{y})=\sqrt{y} \theta({iy})</math> ■ | ||
− | <math>\sum_{ | + | ===일반적인 유리수(cusp)에서의 행동=== |
+ | * <math>pq</math>가 짝수인 자연수 p,q에 대하여 <math>y>0</math>가 매우 작을 때, | ||
+ | :<math>\theta(\frac{p}{q}+iy)\sim \frac{1}{q}S(p,q)\frac{1}{\sqrt{y}}</math> 여기서 <math>S(p,q)=\sum_{r=0}^{q-1} e^{\pi i pr^2/q}</math>는 [[가우스 합]]. 다음과 같이 쓸 수 있다 | ||
+ | :<math>\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\frac{1}{q}S(p,q)</math>:<math>\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(-\frac{p}{q}+i\epsilon)=\frac{1}{q}\overline{S(p,q)}</math> | ||
+ | * 이 정리에 세타함수의 모듈라 성질을 적용하면, 가우스합의 상호법칙을 얻는다 | ||
+ | :<math> | ||
+ | \sqrt{q}\overline{S(q,p)}=e^{-\pi i/4}\sqrt{p}S(p,q) | ||
+ | </math> | ||
+ | * [[가우스 합의 상호법칙(Landsberg-Schaar relation)]] 항목 참조 | ||
− | |||
− | <math>\ | + | ===증명1=== |
+ | <math>\tau =\frac{p}{q}+i y</math>와 다음의 행렬 | ||
+ | :<math> | ||
+ | \left( | ||
+ | \begin{array}{cc} | ||
+ | a & b \\ | ||
+ | q & -p \\ | ||
+ | \end{array} | ||
+ | \right) | ||
+ | </math> | ||
+ | 에 모듈라 성질 \ref{mod}를 적용하면, 다음을 얻는다 | ||
+ | :<math> | ||
+ | \theta \left(\frac{a}{q}+\frac{i}{q^2 y}\right)= \frac{\sqrt{q}}{S(p,q)} \sqrt{q y}\theta \left(\frac{p}{q}+i y\right)=\frac{q \sqrt{y}}{S(p,q)}\theta \left(\frac{p}{q}+i y\right) | ||
+ | </math> | ||
+ | ■ | ||
− | |||
− | ( | + | ===증명2=== |
+ | 다음을 생각하자 | ||
+ | :<math>\theta(\frac{p}{q}+i\epsilon)=\sum_{n=-\infty}^\infty e^{\pi i n^2(\frac{p}{q}+i\epsilon)}= \left(\sum_{r=0}^{q-1}e^{\pi i p r^2/q}\right)\left(\sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2}\right)</math> | ||
+ | 여기서 <math>n=ql+r</math>로 두었음. | ||
− | + | 따라서, | |
+ | :<math>\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\left(\frac{1}{q} \sum_{r=0}^{q-1}e^{i\pi p r^2/q}\right)\left(\sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2} (\sqrt{\epsilon}q)\right).</math> | ||
− | <math>\ | + | 여기서 <math>\Delta{x}=\sqrt{\epsilon}q</math>로 두면, |
+ | :<math>\sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2} ( \sqrt{\epsilon}q)=\sum_{x\in\sqrt{\epsilon}(q\mathbb{Z}+r)}e^{-\pi x^2}\Delta x.\label{thg}</math> | ||
+ | \ref{thg}에서 <math>\epsilon \to 0</math>을 취하면 리만합은 [[1차원 가우시안 적분 ]]으로 수렴하게 된다. 따라서 | ||
+ | :<math>\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\left(\frac{1}{q} \sum_{r=0}^{q-1}e^{i\pi p r^2/q}\right)(\int_{-\infty}^\infty e^{-\pi x^2}\,dx)=\frac{1}{q}S(p,q)</math> ■ | ||
− | + | ==세타함수의 삼중곱 정리(triple product)== | |
− | + | * [[자코비 삼중곱(Jacobi triple product)|세타함수의 삼중곱(triple product)]] | |
− | + | ||
− | + | ||
− | + | ==데데킨트 에타함수와의 관계== | |
− | |||
− | |||
− | |||
− | |||
<math>\theta(\tau)=\frac{\eta(\tau)^5}{\eta(2\tau)^2\eta(\frac{\tau}{2})^2}</math> | <math>\theta(\tau)=\frac{\eta(\tau)^5}{\eta(2\tau)^2\eta(\frac{\tau}{2})^2}</math> | ||
131번째 줄: | 125번째 줄: | ||
<math>\theta(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}=\sum_{n=-\infty}^\infty x^{n^2}=\prod_{m=1}^\infty \left( 1 - x^{2m}\right) \left( 1 + x^{2m-1}\right) \left( 1 + x^{2m-1}\right)</math> | <math>\theta(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}=\sum_{n=-\infty}^\infty x^{n^2}=\prod_{m=1}^\infty \left( 1 - x^{2m}\right) \left( 1 + x^{2m-1}\right) \left( 1 + x^{2m-1}\right)</math> | ||
− | <math>q=e^{2\pi i \tau}</math>, | + | <math>q=e^{2\pi i \tau}</math>, <math>x=e^{\pi i \tau}</math> |
− | * [[데데킨트 에타함수]] | + | * [[데데킨트 에타함수]] 참조 |
− | + | ||
− | + | ||
− | + | ==singular value k와의 관계== | |
<math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math> | <math>k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}</math> | ||
145번째 줄: | 139번째 줄: | ||
<math>k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}</math> | <math>k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}</math> | ||
− | * [[타원적분의 singular value k]] | + | * [[타원적분의 singular value k]] |
− | + | ||
− | + | ||
− | + | ==세타함수와 AGM iteration== | |
<math>\frac{\theta_3^2(q)+\theta_4^2(q)}{2}=\theta_3^2(q^2)</math> | <math>\frac{\theta_3^2(q)+\theta_4^2(q)}{2}=\theta_3^2(q^2)</math> | ||
157번째 줄: | 151번째 줄: | ||
<math>\sqrt{\theta_3^2(q)\theta_4^2(q)}=\theta_4^2(q^2)</math> | <math>\sqrt{\theta_3^2(q)\theta_4^2(q)}=\theta_4^2(q^2)</math> | ||
− | + | 따라서 <math>a_n=\theta_3^2(q^{2^n}),b_n=\theta_4^2(q^{2^n})</math> 라 하면, <math>a_n, b_n</math>은 AGM iteration 을 만족하고 <math>\lim_{n\to\infty}a_n=1</math>이고, <math>1=M(\theta_3^2(q),\theta_4^2(q))</math>가 된다. | |
− | + | ||
− | + | ||
− | + | ==제1종타원적분과의 관계== | |
(정리) | (정리) | ||
− | + | 주어진 <math>0<k<1</math> 에 대하여, <math>k=k(q)=\frac{\theta_2^2(q)}{\theta_3^2(q)}</math>를 만족시키는 <math>q</math>가 존재한다. 이 때, | |
− | <math>M(1,k')=\theta_3^{-2}(q)</math> | + | <math>M(1,k')=\theta_3^{-2}(q)</math> 와 <math>K(k) = \frac{\pi}{2}\theta_3^2(q)</math>가 성립한다. |
− | + | 여기서 <math>K(k)</math>는 [[제1종타원적분 K (complete elliptic integral of the first kind)]]. | |
− | + | ||
(증명) | (증명) | ||
179번째 줄: | 173번째 줄: | ||
<math>1=M(\theta_3^2(q),\theta_4^2(q))=\theta_3^{2}(q)M(1,\frac{\theta_4^2(q)}{\theta_3^2(q)})=\theta_3^{2}(q)M(1,k')</math> | <math>1=M(\theta_3^2(q),\theta_4^2(q))=\theta_3^{2}(q)M(1,\frac{\theta_4^2(q)}{\theta_3^2(q)})=\theta_3^{2}(q)M(1,k')</math> | ||
− | 그러므로, | + | 그러므로, <math>M(1,k')=\theta_3^{-2}(q)</math>이다. |
− | 한편, 란덴변환에 | + | 한편, 란덴변환에 의해 <math>K(k)=\frac{\pi}{2M(1,\sqrt{1-k^2})}</math>가 성립([[산술기하평균함수(AGM)와 파이값의 계산]] , [[란덴변환(Landen's transformation)]] 참조)하므로, <math>K(k) = \frac{\pi}{2}\theta_3^2(q)</math>도 증명된다. (증명끝) |
− | + | ||
− | + | ||
− | + | ==special values== | |
− | <math>\theta_3(i)=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})} | + | <math>\theta_3(i)=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}=1.08643481121\cdots</math> |
(증명) | (증명) | ||
195번째 줄: | 189번째 줄: | ||
[[감마함수]]의 다음 성질을 사용하면<math>\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!</math> | [[감마함수]]의 다음 성질을 사용하면<math>\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!</math> | ||
− | <math>\Gamma(\frac{1}{4})\Gamma(\frac{3}{4}) = \sqrt{2}{\pi </math> | + | <math>\Gamma(\frac{1}{4})\Gamma(\frac{3}{4}) = \sqrt{2}{\pi} </math> |
위에서 증명한 [[제1종타원적분 K (complete elliptic integral of the first kind)]]과의 관계로부터 | 위에서 증명한 [[제1종타원적분 K (complete elliptic integral of the first kind)]]과의 관계로부터 | ||
203번째 줄: | 197번째 줄: | ||
<math>\frac{\pi}{2}\theta_3^2(i)=K(k_1)=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}</math> | <math>\frac{\pi}{2}\theta_3^2(i)=K(k_1)=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}</math> | ||
− | <math>\theta_3^2(i)=\frac{\Gamma(\frac{1}{4})^2}{2{\pi}^{3/2}}=\frac{\sqrt{\pi}}{\Gamma(\frac{3}{4})^2}</math> | + | <math>\theta_3^2(i)=\frac{\Gamma(\frac{1}{4})^2}{2{\pi}^{3/2}}=\frac{\sqrt{\pi}}{\Gamma(\frac{3}{4})^2}</math> ■ |
− | + | ||
− | <math>\theta_3(i)=\sum_{n=-\infty}^\infty e^{-\pi n^2}=1+2\sum_{n=1}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4}) | + | <math>\theta_3(i)=\sum_{n=-\infty}^\infty e^{-\pi n^2}=1+2\sum_{n=1}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}</math> |
− | |||
− | + | ==재미있는 사실== | |
− | |||
− | |||
<math>f(\tau)=1+2\sum_{n=1}^{\infty}e^{\pi i n \tau}</math> | <math>f(\tau)=1+2\sum_{n=1}^{\infty}e^{\pi i n \tau}</math> | ||
221번째 줄: | 212번째 줄: | ||
<math>\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}</math> | <math>\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}</math> | ||
− | + | ||
− | <math>\theta(i)=\sum_{n=-\infty}^\infty e^{-\pi n^2}=1+2\sum_{n=1}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4}) | + | <math>\theta(i)=\sum_{n=-\infty}^\infty e^{-\pi n^2}=1+2\sum_{n=1}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}</math> |
− | + | ||
<math>\sum_{n=0}^{\infty} e^{-\pi n}=\frac{e^{\pi}}{e^{\pi}-1}</math> | <math>\sum_{n=0}^{\infty} e^{-\pi n}=\frac{e^{\pi}}{e^{\pi}-1}</math> | ||
235번째 줄: | 226번째 줄: | ||
<math>\sum_{n=0}^\infty e^{-\pi n^4}=?</math> | <math>\sum_{n=0}^\infty e^{-\pi n^4}=?</math> | ||
− | |||
− | |||
− | + | ==관련된 항목들== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* [[타원함수]] | * [[타원함수]] | ||
+ | * [[자코비 세타함수와 자코비 형식]] | ||
* [[산술기하평균함수(AGM)와 파이값의 계산|AGM과 파이값의 계산]] | * [[산술기하평균함수(AGM)와 파이값의 계산|AGM과 파이값의 계산]] | ||
* [[제1종타원적분 K (complete elliptic integral of the first kind)]] | * [[제1종타원적분 K (complete elliptic integral of the first kind)]] | ||
254번째 줄: | 238번째 줄: | ||
* [[격자의 세타함수]] | * [[격자의 세타함수]] | ||
− | |||
− | + | ==매스매티카 파일 및 계산 리소스== | |
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxajFqYUM5ZEVQaVE/edit | ||
− | |||
− | + | ==관련도서== | |
− | |||
− | |||
− | |||
− | + | * [http://www.amazon.com/First-Course-Modular-Graduate-Mathematics/dp/038723229X A First Course in Modular Forms (Graduate Texts in Mathematics)] | |
+ | ** Fred Diamond and Jerry Shurman, 18-19p | ||
+ | * Richard Bellman, A Brief Introduction to Theta Functions | ||
+ | * David Mumford Tata Lectures on Theta I,II,III | ||
− | + | ==사전 형태의 자료== | |
− | |||
− | |||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
277번째 줄: | 258번째 줄: | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
− | + | ||
− | + | ||
− | + | ||
− | < | + | ==관련논문== |
+ | * Kazuhide Matsuda, Derivative formulas for <math>Γ(3), Γ(4), Γ(5)</math> and <math>Γ(6)</math>, arXiv:1606.07753 [math.CA], June 18 2016, http://arxiv.org/abs/1606.07753 | ||
− | * Quadratic reciprocity and the theta function ([[1971206/attachments/2794217|reciprocity.pdf]] ) | + | * Quadratic reciprocity and the theta function ([[1971206/attachments/2794217|reciprocity.pdf]] ) |
− | ** Tao | + | ** Terence Tao |
− | * [http://projecteuclid.org/euclid.nmj/1118797885 On a classical theta-function] | + | * [http://projecteuclid.org/euclid.nmj/1118797885 On a classical theta-function] |
** Tomio Kubota, Nagoya Math. J. Volume 37 (1970), 183-189 | ** Tomio Kubota, Nagoya Math. J. Volume 37 (1970), 183-189 | ||
− | * | + | * [http://www.jstor.org/stable/2304027 Applications of Theta Functions to Arithmetic] |
− | ** | + | ** G. D. Nichols, <cite>The American Mathematical Monthly</cite>, Vol. 45, No. 6 (Jun. - Jul., 1938), pp. 363-368 |
− | * [http://www. | + | * [http://www.math.ohio-state.edu/%7Eeconrad/Jacobi/Jacobi.html Karl Gustav Jacob Jacobi] |
− | + | ** [http://www.math.ohio-state.edu/%7Eeconrad/Jacobi/sumofsq Jacobi's Four Square Theorem]. (Also available in [http://www.math.ohio-state.edu/%7Eeconrad/Jacobi/sumofsq.ps postscript format] [11 pages].) [CONSTRUCTION IN PROGRESS] | |
− | + | [[분류:리만곡면론]] | |
− | + | [[분류:특수함수]] | |
− | * [ | + | ==메타데이터== |
− | * | + | ===위키데이터=== |
+ | * ID : [https://www.wikidata.org/wiki/Q1154787 Q1154787] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'theta'}, {'LEMMA': 'function'}] | ||
− | + | == 노트 == | |
− | + | ||
− | + | ===말뭉치=== | |
− | * | + | # See Jacobi theta functions (notational variations) for further discussion.<ref name="ref_47dceeb0">[https://en.wikipedia.org/wiki/Theta_function Theta function]</ref> |
+ | # More broadly, this section includes quasi-doubly periodic functions (such as the Jacobi theta functions) and other functions useful in the study of elliptic functions.<ref name="ref_8d134ea9">[https://mpmath.org/doc/current/functions/elliptic.html Elliptic functions — mpmath 1.2.0 documentation]</ref> | ||
+ | # JacobiTheta(j, z, tau) , rendered as θ j ( z , τ ) \theta_{j}\!\left(z , \tau\right) θ j ( z , τ ) , denotes a Jacobi theta function.<ref name="ref_9b2e95bd">[https://fungrim.org/topic/Jacobi_theta_functions/ Jacobi theta functions]</ref> | ||
+ | # There are four Jacobi theta functions, identified by the index j ∈ { 1 , 2 , 3 , 4 } j \in \left\{1, 2, 3, 4\right\} j ∈ { 1 , 2 , 3 , 4 } .<ref name="ref_9b2e95bd" /> | ||
+ | # The values of the Jacobi theta functions at z = 0 z = 0 z = 0 are known as theta constants.<ref name="ref_9b2e95bd" /> | ||
+ | # ( z , τ ) , represents the order r r r derivative of the Jacobi theta function with respect to the argument z z z .<ref name="ref_9b2e95bd" /> | ||
+ | # The following table illustrates the quasi-double periodicity of the Jacobi theta functions.<ref name="ref_e75b7981">[https://mathworld.wolfram.com/JacobiThetaFunctions.html Jacobi Theta Functions -- from Wolfram MathWorld]</ref> | ||
+ | # Any Jacobi theta function of given arguments can be expressed in terms of any other two Jacobi theta functions with the same arguments.<ref name="ref_e75b7981" /> | ||
+ | # The plots above show the Jacobi theta functions plotted as a function of argument and nome restricted to real values.<ref name="ref_e75b7981" /> | ||
+ | # The Jacobi theta functions satisfy an almost bewilderingly large number of identities involving the four functions, their derivatives, multiples of their arguments, and sums of their arguments.<ref name="ref_e75b7981" /> | ||
+ | # Previously, we proved an addition formula for the Jacobi theta function, which allows us to recover many important classical theta function identi- ties.<ref name="ref_b04dab81">[https://msp.org/pjm/2009/240-1/pjm-v240-n1-p05-p.pdf Pacific]</ref> | ||
+ | # We rst need to introduce the Jacobi theta functions.<ref name="ref_b04dab81" /> | ||
+ | # Let 1, 2, 3, and 4 be the Jacobi theta functions.<ref name="ref_b04dab81" /> | ||
+ | # This identity includes many well-known addition formulas for the Jacobi theta functions.<ref name="ref_b04dab81" /> | ||
+ | # We use Jacobi theta functions to construct examples of Jacobi forms over number fields.<ref name="ref_d36434ef">[https://link.springer.com/article/10.1007/s00605-003-0037-2 Jacobi Theta Functions over Number Fields]</ref> | ||
+ | # We determine the behavior under modular transformations by regarding certain coefficients of the Jacobi theta functions as specializations of symplectic theta functions.<ref name="ref_d36434ef" /> | ||
+ | # In addition, we show how sums of those Jacobi theta functions appear as a single coefficient of a symplectic theta function.<ref name="ref_d36434ef" /> | ||
+ | # For those parameters for which this equation reduces to the heat equation, Θ(x,t) reduces to the third Jacobi Theta function.<ref name="ref_e0890d26">[https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.1670060120 A generalized jacobi theta function]</ref> | ||
+ | # They generalize modular forms, have an associated weight and index (which is a positive half-integer), and include the classical Jacobi theta function.<ref name="ref_e3a919f9">[https://www.albany.edu/~am815139/negative_matrix_index181.pdf Rank two false theta functions and jacobi forms of]</ref> | ||
+ | # We rst recall some properties of the Jacobi theta function.<ref name="ref_e3a919f9" /> | ||
+ | # Previously, we proved an addition formula for the Jacobi theta function, which allows us to recover many important classical theta function identities.<ref name="ref_82d33b24">[https://www.semanticscholar.org/paper/Addition-formulas-for-Jacobi-theta-functions%2C-eta-Liu/db5497037130b6cff34eee84bdea23fb0da9580a [PDF] Addition formulas for Jacobi theta functions, Dedekind’s eta function, and Ramanujan’s congruences]</ref> | ||
+ | # This section is about a more general theta function, called the Jacobi theta function.<ref name="ref_fecd04fc">[http://www.math.columbia.edu/~woit/fourier-analysis/theta-zeta.pdf Notes on the poisson summation formula, theta]</ref> | ||
+ | # The Jacobi theta function has the following properties: Two-fold periodicity in z (up to a phase, for xed ).<ref name="ref_fecd04fc" /> | ||
+ | ===소스=== | ||
+ | <references /> | ||
+ | |||
+ | == 메타데이터 == | ||
+ | |||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q17098064 Q17098064] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'jacobi'}, {'LOWER': 'theta'}, {'LEMMA': 'function'}] |
2021년 2월 23일 (화) 03:49 기준 최신판
개요
- \(q=e^{2\pi i \tau}\), \(x=e^{\pi i \tau}\)라 두자
- 세타함수의 정의 (spectral decomposition of heat kernel)
\[\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}=\sum_{n=-\infty}^\infty x^{n^2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}\] \[\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}\] \[\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\]
- 자코비는 이를 통하여 타원함수론을 전개
- 응용으로 자코비의 네 제곱수 정리, 퐁슬레의 정리 등의 증명에 사용됨
- 모듈라 형식(modular forms)의 예
- 제1종타원적분 K (complete elliptic integral of the first kind), 타원적분의 singular value k와 밀접한 관계를 가짐\[K(k(\tau)) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}} = \frac{\pi}{2}\theta_3^2(\tau)\]\[k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\]
많이 사용되는 또다른 정의
- 전통적인 세타함수\[\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}\]
- 현대의 수학문헌에서는 다음과 같은 함수도 같은 이름으로 자주 사용됨\[\Theta(\tau)=\sum_{n=-\infty}^\infty q^{n^2}= \sum_{n=-\infty}^\infty e^{2\pi i n^2\tau}\,\quad (q=e^{2\pi i \tau})\]
- \(\Theta(\tau)\) 는 \(\Gamma_0(4)\)에 대한 모듈라 형식이 됨\[\Gamma_0(4) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} {*} & {*} \\ 0 & {*} \end{pmatrix} \pmod{4} \right\}\]
여러가지 공식들
- \(\theta_2^4(q)+\theta_4^4(q)=\theta_3^4(q)\)
- \(\theta_3^2(q^2)+\theta_2^2(q^2)=\theta_3^2(q)\)
- \(\theta_3^2(q^2)-\theta_2^2(q^2)=\theta_3^2(q)\)
세타함수의 모듈라 성질
- 정리
세타함수는 다음의 변환 성질을 만족한다 \[\theta(-\frac{1}{\tau})=\sqrt{\frac{\tau}{i}} \theta({\tau})=\sqrt{-i\tau}\theta({\tau})\] 여기서 \(-\frac{\pi}{4}<\arg \sqrt{-i\tau}<\frac{\pi}{4}\) 이 되도록 선택
- 증명
포아송의 덧셈 공식을 사용한다. \[\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)\]
\(f(x)=e^{\pi i x^2\tau}\)의 푸리에 변환은 다음과 같이 주어진다. \[\hat{f}(\xi)=\sqrt{\frac{i}{\tau}}e^{-\pi i\frac{\xi^2}{\tau}}\] 따라서 \[\theta(\tau)= \sum_{n\in \mathbb Z} \exp(\pi i n^2\tau)=\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)=\sqrt{\frac{i}{\tau}}\sum_{n\in \mathbb Z}e^{-\pi i n^2 \frac{1}{\tau}}=\sqrt{\frac{i}{\tau}}\theta(-\frac{1}{\tau})\] ■
- \(\tau=iy, y>0\) 으로 쓰면, 다음과 같이 표현된다 \[\theta(\frac{i}{y})=\sqrt{y} \theta({iy})\]
- \(\Gamma(2)\)에 대한 모듈라 형식이 됨\[\Gamma(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{2} \right\}\]
더 일반적인 모듈라 변환
더 일반적으로, \(ad-bc=1\), \(ab\equiv 0\pmod 2\), \(cd\equiv 0\pmod 2\), \(c>0\)인 정수 a,b,c,d에 대하여 다음이 성립한다 \[\theta \left( \frac {a\tau+b} {c\tau+d}\right) =\epsilon(c,d) \sqrt{-i\left(c\tau+d\right)}\theta(\tau) \label{mod}\] 여기서 \(-\frac{\pi}{4}<\arg \sqrt{-i(c\tau+d)}<\frac{\pi}{4}\) 이 되도록 선택하며 (\(\Re\left(-i(c\tau+d)\right) >0\)이다), \[\epsilon(c,d)=\frac{\sqrt{c}}{S(-d,c)}\] 이고 \(S(p,q)=\sum_{r=0}^{q-1} e^{\pi i pr^2/q}\)는 가우스 합.
cusp에서의 행동과 가우스합
0 근방에서의 행동
- \(y>0\)가 매우 작을 때,
\[\theta(iy)\sim \frac{1}{\sqrt{y}}\] (증명) \[\theta(\frac{i}{y})=\sqrt{y} \theta({iy})\] ■
일반적인 유리수(cusp)에서의 행동
- \(pq\)가 짝수인 자연수 p,q에 대하여 \(y>0\)가 매우 작을 때,
\[\theta(\frac{p}{q}+iy)\sim \frac{1}{q}S(p,q)\frac{1}{\sqrt{y}}\] 여기서 \(S(p,q)=\sum_{r=0}^{q-1} e^{\pi i pr^2/q}\)는 가우스 합. 다음과 같이 쓸 수 있다 \[\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\frac{1}{q}S(p,q)\]\[\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(-\frac{p}{q}+i\epsilon)=\frac{1}{q}\overline{S(p,q)}\]
- 이 정리에 세타함수의 모듈라 성질을 적용하면, 가우스합의 상호법칙을 얻는다
\[ \sqrt{q}\overline{S(q,p)}=e^{-\pi i/4}\sqrt{p}S(p,q) \]
증명1
\(\tau =\frac{p}{q}+i y\)와 다음의 행렬 \[ \left( \begin{array}{cc} a & b \\ q & -p \\ \end{array} \right) \] 에 모듈라 성질 \ref{mod}를 적용하면, 다음을 얻는다 \[ \theta \left(\frac{a}{q}+\frac{i}{q^2 y}\right)= \frac{\sqrt{q}}{S(p,q)} \sqrt{q y}\theta \left(\frac{p}{q}+i y\right)=\frac{q \sqrt{y}}{S(p,q)}\theta \left(\frac{p}{q}+i y\right) \] ■
증명2
다음을 생각하자 \[\theta(\frac{p}{q}+i\epsilon)=\sum_{n=-\infty}^\infty e^{\pi i n^2(\frac{p}{q}+i\epsilon)}= \left(\sum_{r=0}^{q-1}e^{\pi i p r^2/q}\right)\left(\sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2}\right)\] 여기서 \(n=ql+r\)로 두었음.
따라서, \[\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\left(\frac{1}{q} \sum_{r=0}^{q-1}e^{i\pi p r^2/q}\right)\left(\sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2} (\sqrt{\epsilon}q)\right).\]
여기서 \(\Delta{x}=\sqrt{\epsilon}q\)로 두면, \[\sum_{l=-\infty}^\infty e^{-\pi \epsilon (ql+r)^2} ( \sqrt{\epsilon}q)=\sum_{x\in\sqrt{\epsilon}(q\mathbb{Z}+r)}e^{-\pi x^2}\Delta x.\label{thg}\] \ref{thg}에서 \(\epsilon \to 0\)을 취하면 리만합은 1차원 가우시안 적분 으로 수렴하게 된다. 따라서 \[\lim_{\epsilon \to 0}\sqrt{\epsilon} \theta(\frac{p}{q}+i\epsilon)=\left(\frac{1}{q} \sum_{r=0}^{q-1}e^{i\pi p r^2/q}\right)(\int_{-\infty}^\infty e^{-\pi x^2}\,dx)=\frac{1}{q}S(p,q)\] ■
세타함수의 삼중곱 정리(triple product)
데데킨트 에타함수와의 관계
\(\theta(\tau)=\frac{\eta(\tau)^5}{\eta(2\tau)^2\eta(\frac{\tau}{2})^2}\)
삼중곱 공식을 이용
\(\theta(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}=\sum_{n=-\infty}^\infty x^{n^2}=\prod_{m=1}^\infty \left( 1 - x^{2m}\right) \left( 1 + x^{2m-1}\right) \left( 1 + x^{2m-1}\right)\)
\(q=e^{2\pi i \tau}\), \(x=e^{\pi i \tau}\)
- 데데킨트 에타함수 참조
singular value k와의 관계
\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)
\(k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}\)
세타함수와 AGM iteration
\(\frac{\theta_3^2(q)+\theta_4^2(q)}{2}=\theta_3^2(q^2)\)
\(\sqrt{\theta_3^2(q)\theta_4^2(q)}=\theta_4^2(q^2)\)
따라서 \(a_n=\theta_3^2(q^{2^n}),b_n=\theta_4^2(q^{2^n})\) 라 하면, \(a_n, b_n\)은 AGM iteration 을 만족하고 \(\lim_{n\to\infty}a_n=1\)이고, \(1=M(\theta_3^2(q),\theta_4^2(q))\)가 된다.
제1종타원적분과의 관계
(정리)
주어진 \(0<k<1\) 에 대하여, \(k=k(q)=\frac{\theta_2^2(q)}{\theta_3^2(q)}\)를 만족시키는 \(q\)가 존재한다. 이 때,
\(M(1,k')=\theta_3^{-2}(q)\) 와 \(K(k) = \frac{\pi}{2}\theta_3^2(q)\)가 성립한다.
여기서 \(K(k)\)는 제1종타원적분 K (complete elliptic integral of the first kind).
(증명)
\(1=M(\theta_3^2(q),\theta_4^2(q))=\theta_3^{2}(q)M(1,\frac{\theta_4^2(q)}{\theta_3^2(q)})=\theta_3^{2}(q)M(1,k')\)
그러므로, \(M(1,k')=\theta_3^{-2}(q)\)이다.
한편, 란덴변환에 의해 \(K(k)=\frac{\pi}{2M(1,\sqrt{1-k^2})}\)가 성립(산술기하평균함수(AGM)와 파이값의 계산 , 란덴변환(Landen's transformation) 참조)하므로, \(K(k) = \frac{\pi}{2}\theta_3^2(q)\)도 증명된다. (증명끝)
special values
\(\theta_3(i)=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}=1.08643481121\cdots\)
(증명)
감마함수의 다음 성질을 사용하면\(\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\)
\(\Gamma(\frac{1}{4})\Gamma(\frac{3}{4}) = \sqrt{2}{\pi} \)
위에서 증명한 제1종타원적분 K (complete elliptic integral of the first kind)과의 관계로부터
\(K(k(\tau)) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}} = \frac{\pi}{2}\theta_3^2(\tau)\)
\(\frac{\pi}{2}\theta_3^2(i)=K(k_1)=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}\)
\(\theta_3^2(i)=\frac{\Gamma(\frac{1}{4})^2}{2{\pi}^{3/2}}=\frac{\sqrt{\pi}}{\Gamma(\frac{3}{4})^2}\) ■
\(\theta_3(i)=\sum_{n=-\infty}^\infty e^{-\pi n^2}=1+2\sum_{n=1}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}\)
재미있는 사실
\(f(\tau)=1+2\sum_{n=1}^{\infty}e^{\pi i n \tau}\)
\(f(i)=1+2\sum_{n=1}^{\infty} e^{-n\pi}= \frac{e^{\pi} + 1} {e^{\pi} - 1}\)
\(\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}\)
\(\theta(i)=\sum_{n=-\infty}^\infty e^{-\pi n^2}=1+2\sum_{n=1}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}\)
\(\sum_{n=0}^{\infty} e^{-\pi n}=\frac{e^{\pi}}{e^{\pi}-1}\)
\(\sum_{n=0}^\infty e^{-\pi n^2}=\frac{\sqrt[4]{\pi}}{2\Gamma(\frac{3}{4})}+\frac{1}{2}\)
\(\sum_{n=0}^\infty e^{-\pi n^3}=?\)
\(\sum_{n=0}^\infty e^{-\pi n^4}=?\)
관련된 항목들
- 타원함수
- 자코비 세타함수와 자코비 형식
- AGM과 파이값의 계산
- 제1종타원적분 K (complete elliptic integral of the first kind)
- 이차형식
- 모듈라 형식(modular forms)
- 격자의 세타함수
매스매티카 파일 및 계산 리소스
관련도서
- A First Course in Modular Forms (Graduate Texts in Mathematics)
- Fred Diamond and Jerry Shurman, 18-19p
- Richard Bellman, A Brief Introduction to Theta Functions
- David Mumford Tata Lectures on Theta I,II,III
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Theta_functions
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
관련논문
- Kazuhide Matsuda, Derivative formulas for \(Γ(3), Γ(4), Γ(5)\) and \(Γ(6)\), arXiv:1606.07753 [math.CA], June 18 2016, http://arxiv.org/abs/1606.07753
- Quadratic reciprocity and the theta function (reciprocity.pdf )
- Terence Tao
- On a classical theta-function
- Tomio Kubota, Nagoya Math. J. Volume 37 (1970), 183-189
- Applications of Theta Functions to Arithmetic
- G. D. Nichols, The American Mathematical Monthly, Vol. 45, No. 6 (Jun. - Jul., 1938), pp. 363-368
- Karl Gustav Jacob Jacobi
- Jacobi's Four Square Theorem. (Also available in postscript format [11 pages].) [CONSTRUCTION IN PROGRESS]
메타데이터
위키데이터
- ID : Q1154787
Spacy 패턴 목록
- [{'LOWER': 'theta'}, {'LEMMA': 'function'}]
노트
말뭉치
- See Jacobi theta functions (notational variations) for further discussion.[1]
- More broadly, this section includes quasi-doubly periodic functions (such as the Jacobi theta functions) and other functions useful in the study of elliptic functions.[2]
- JacobiTheta(j, z, tau) , rendered as θ j ( z , τ ) \theta_{j}\!\left(z , \tau\right) θ j ( z , τ ) , denotes a Jacobi theta function.[3]
- There are four Jacobi theta functions, identified by the index j ∈ { 1 , 2 , 3 , 4 } j \in \left\{1, 2, 3, 4\right\} j ∈ { 1 , 2 , 3 , 4 } .[3]
- The values of the Jacobi theta functions at z = 0 z = 0 z = 0 are known as theta constants.[3]
- ( z , τ ) , represents the order r r r derivative of the Jacobi theta function with respect to the argument z z z .[3]
- The following table illustrates the quasi-double periodicity of the Jacobi theta functions.[4]
- Any Jacobi theta function of given arguments can be expressed in terms of any other two Jacobi theta functions with the same arguments.[4]
- The plots above show the Jacobi theta functions plotted as a function of argument and nome restricted to real values.[4]
- The Jacobi theta functions satisfy an almost bewilderingly large number of identities involving the four functions, their derivatives, multiples of their arguments, and sums of their arguments.[4]
- Previously, we proved an addition formula for the Jacobi theta function, which allows us to recover many important classical theta function identi- ties.[5]
- We rst need to introduce the Jacobi theta functions.[5]
- Let 1, 2, 3, and 4 be the Jacobi theta functions.[5]
- This identity includes many well-known addition formulas for the Jacobi theta functions.[5]
- We use Jacobi theta functions to construct examples of Jacobi forms over number fields.[6]
- We determine the behavior under modular transformations by regarding certain coefficients of the Jacobi theta functions as specializations of symplectic theta functions.[6]
- In addition, we show how sums of those Jacobi theta functions appear as a single coefficient of a symplectic theta function.[6]
- For those parameters for which this equation reduces to the heat equation, Θ(x,t) reduces to the third Jacobi Theta function.[7]
- They generalize modular forms, have an associated weight and index (which is a positive half-integer), and include the classical Jacobi theta function.[8]
- We rst recall some properties of the Jacobi theta function.[8]
- Previously, we proved an addition formula for the Jacobi theta function, which allows us to recover many important classical theta function identities.[9]
- This section is about a more general theta function, called the Jacobi theta function.[10]
- The Jacobi theta function has the following properties: Two-fold periodicity in z (up to a phase, for xed ).[10]
소스
- ↑ Theta function
- ↑ Elliptic functions — mpmath 1.2.0 documentation
- ↑ 3.0 3.1 3.2 3.3 Jacobi theta functions
- ↑ 4.0 4.1 4.2 4.3 Jacobi Theta Functions -- from Wolfram MathWorld
- ↑ 5.0 5.1 5.2 5.3 Pacific
- ↑ 6.0 6.1 6.2 Jacobi Theta Functions over Number Fields
- ↑ A generalized jacobi theta function
- ↑ 8.0 8.1 Rank two false theta functions and jacobi forms of
- ↑ [PDF Addition formulas for Jacobi theta functions, Dedekind’s eta function, and Ramanujan’s congruences]
- ↑ 10.0 10.1 Notes on the poisson summation formula, theta
메타데이터
위키데이터
- ID : Q17098064
Spacy 패턴 목록
- [{'LOWER': 'jacobi'}, {'LOWER': 'theta'}, {'LEMMA': 'function'}]