"코탄젠트"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
25번째 줄: 25번째 줄:
 
<h5>코탄젠트의 푸리에급수</h5>
 
<h5>코탄젠트의 푸리에급수</h5>
  
<math>\pi \cot \pi\tau=\pi\frac{\cos \pi\tau}{\sin\pi\tau}=\pi i \frac{e^{i\pi\tau}+e^{-i\pi\tau}}{e^{i\pi\tau}-e^{-i\pi\tau}}=\pi i \frac{e^{2\pi i \tai}+1}{e^{2\pi i \tai}-1}</math>
+
<math>\cot \pi\tau=-i (1+2\sum_{r=1}^{\infty}e^{2\pi i r \tau})</math>
 +
 
 +
(증명)
 +
 
 +
<math>\pi \cot \pi\tau=\pi\frac{\cos \pi\tau}{\sin\pi\tau}=\pi i \frac{e^{i\pi\tau}+e^{-i\pi\tau}}{e^{i\pi\tau}-e^{-i\pi\tau}}=\pi i \frac{e^{2\pi i \tau}+1}{e^{2\pi i \tau}-1}</math>
  
 
<math>\pi i \frac{q+1}{q-1}=\pi i (\frac{q}{q-1}+\frac{1}{q-1})=-\pi i (\sum_{r=1}^{\infty}q^r+\sum_{r=0}^{\infty}q^r)=-\pi i (1+2\sum_{r=1}^{\infty}q^r)</math>
 
<math>\pi i \frac{q+1}{q-1}=\pi i (\frac{q}{q-1}+\frac{1}{q-1})=-\pi i (\sum_{r=1}^{\infty}q^r+\sum_{r=0}^{\infty}q^r)=-\pi i (1+2\sum_{r=1}^{\infty}q^r)</math>
34번째 줄: 38번째 줄:
  
 
<math>\frac{1}{\tau}+\sum_{m\neq0}\frac{1}{\tau+m}-\frac{1}{m} = -\pi i (1+2\sum_{r=1}^{\infty}e^{2\pi i r \tau})</math>
 
<math>\frac{1}{\tau}+\sum_{m\neq0}\frac{1}{\tau+m}-\frac{1}{m} = -\pi i (1+2\sum_{r=1}^{\infty}e^{2\pi i r \tau})</math>
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5>
 
 
 
 
  
 
 
 
 
  
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">상위 주제</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">상위 주제</h5>
 
 
 
 
 
 
 
 
 
 
==== 하위페이지 ====
 
 
* [[1964250|0 토픽용템플릿]]<br>
 
** [[2060652|0 상위주제템플릿]]<br>
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
 
  
 
 
 
 
73번째 줄: 54번째 줄:
  
 
* 네이버 지식인<br>
 
* 네이버 지식인<br>
 +
** [http://kin.search.naver.com/search.naver?where=kin_qna&query=%EC%BD%94%ED%83%84%EC%A0%A0%ED%8A%B8 http://kin.search.naver.com/search.naver?where=kin_qna&query=코탄젠트]
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
+
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
+
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
** http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
 
 
 

2009년 12월 2일 (수) 19:30 판

이 항목의 스프링노트 원문주소

 

 

코탄젠트의 테일러급수

\(\cot x = \frac {1} {x} - \frac {x}{3} - \frac {x^3} {45} - \frac {2 x^5} {945} - \cdots = \sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!}\)

 

 

코탄젠트의 부분분수 전개

\(\pi \cot \pi\tau=\frac{1}{\tau}+\sum_{m\neq0}\frac{1}{\tau+m}-\frac{1}{m}\)

 

 

코탄젠트의 푸리에급수

\(\cot \pi\tau=-i (1+2\sum_{r=1}^{\infty}e^{2\pi i r \tau})\)

(증명)

\(\pi \cot \pi\tau=\pi\frac{\cos \pi\tau}{\sin\pi\tau}=\pi i \frac{e^{i\pi\tau}+e^{-i\pi\tau}}{e^{i\pi\tau}-e^{-i\pi\tau}}=\pi i \frac{e^{2\pi i \tau}+1}{e^{2\pi i \tau}-1}\)

\(\pi i \frac{q+1}{q-1}=\pi i (\frac{q}{q-1}+\frac{1}{q-1})=-\pi i (\sum_{r=1}^{\infty}q^r+\sum_{r=0}^{\infty}q^r)=-\pi i (1+2\sum_{r=1}^{\infty}q^r)\)

 

위의 두 표현에서 다음을 얻는다

\(\frac{1}{\tau}+\sum_{m\neq0}\frac{1}{\tau+m}-\frac{1}{m} = -\pi i (1+2\sum_{r=1}^{\infty}e^{2\pi i r \tau})\)

 

상위 주제

 

 

역사
많이 나오는 질문과 답변

 

 

관련된 고교수학 또는 대학수학

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상