"코탄젠트"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지에 cotangent.jpg 파일을 등록하셨습니다.)
9번째 줄: 9번째 줄:
 
<h5>개요</h5>
 
<h5>개요</h5>
  
* 주기가
+
* 주기가 <math>\pi</math>인 주기함수
 +
*  정의<br><math>\cot x = \frac{\cos x}{\sin x} </math><br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>함수의 그래프</h5>
 +
 
 +
[/pages/3758315/attachments/3110865 cotangent.jpg]
  
 
 
 
 
53번째 줄: 62번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">상위 주제</h5>
+
 
 +
 
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
 +
 
 +
* [[수학사연표 (역사)|수학사연표]]<br>
  
 
 
 
 
  
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
 
 
* [[수학사연표 (역사)|수학사연표]]<br>  <br>
 
  
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">많이 나오는 질문과 답변</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">많이 나오는 질문과 답변</h5>
83번째 줄: 92번째 줄:
 
* [[베르누이 수|베르누이 수와 베르누이 다항식]]<br>
 
* [[베르누이 수|베르누이 수와 베르누이 다항식]]<br>
 
* [[아이젠슈타인 급수(Eisenstein series)]]<br>
 
* [[아이젠슈타인 급수(Eisenstein series)]]<br>
* [[3792297|슈테판-볼츠만 법칙과 리만제타함수의 값]]<br>
+
* [[#]]<br>
 +
*  
 
*   <br>
 
*   <br>
  
96번째 줄: 106번째 줄:
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 +
 +
 
  
 
 
 
 

2010년 6월 9일 (수) 04:55 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 주기가 \(\pi\)인 주기함수
  • 정의
    \(\cot x = \frac{\cos x}{\sin x} \)

 

 

함수의 그래프

[/pages/3758315/attachments/3110865 cotangent.jpg]

 

 

코탄젠트의 테일러급수

\(\cot x = \frac {1} {x} - \frac {x}{3} - \frac {x^3} {45} - \frac {2 x^5} {945} - \cdots = \sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!}\)

 

 

코탄젠트의 부분분수 전개

\(\pi \cot \pi\tau=\frac{1}{\tau}+\sum_{m\neq0}\frac{1}{\tau+m}-\frac{1}{m}\)

 

 

코탄젠트의 푸리에급수

\(\cot \pi\tau=-i (1+2\sum_{r=1}^{\infty}e^{2\pi i r \tau})\)

(증명)

\(\cot \pi\tau=\frac{\cos \pi\tau}{\sin\pi\tau}=i \frac{e^{i\pi\tau}+e^{-i\pi\tau}}{e^{i\pi\tau}-e^{-i\pi\tau}}=i \frac{e^{2\pi i \tau}+1}{e^{2\pi i \tau}-1}\)

\(q=e^{2\pi i \tau}\) 로 두자.

\(\pi i \frac{q+1}{q-1}=\pi i (\frac{q}{q-1}+\frac{1}{q-1})=-\pi i (\sum_{r=1}^{\infty}q^r+\sum_{r=0}^{\infty}q^r)=-\pi i (1+2\sum_{r=1}^{\infty}q^r)\)■

 

(따름정리)

코탄젠트의 푸리에급수와 부분분수 전개를 비교하여, 다음을 얻는다.

\(\frac{1}{\tau}+\sum_{m\neq0}\frac{1}{\tau+m}-\frac{1}{m} = -\pi i (1+2\sum_{r=1}^{\infty}e^{2\pi i r \tau})\)

 

 

역사

 

 

많이 나오는 질문과 답변

 

 

관련된 고교수학 또는 대학수학

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

 

사전형태의 자료

 

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상