"구면(sphere)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
18번째 줄: 18번째 줄:
  
 
* 3차원상의 반지름이 R인 구면 <math> x^2+y^2+z^2 = R^2</math>
 
* 3차원상의 반지름이 R인 구면 <math> x^2+y^2+z^2 = R^2</math>
*  매개화<br><math>X(u,v)=R(\cos u \sin v, \sin u \sin v, \cos v)</math><br><math>0<u<2\pi</math>, <math>0<v<\pi</math><br>
+
*  매개화:<math>X(u,v)=R(\cos u \sin v, \sin u \sin v, \cos v)</math>:<math>0<u<2\pi</math>, <math>0<v<\pi</math><br>
* <math>X_u=R(- \sin u  \sin v , \cos u  \sin v ,0)</math><br><math>X_v=R( \cos u  \cos v , \sin u  \cos v ,-\sin v)</math><br><math>N=(-\cos u \sin v, -\sin u \sin v, -\cos v)</math><br><math>X_{uu}=R(-\cos u \sin v , -\sin u \sin v ,0)</math><br><math>X_{uv}=R(-\cos  v  \sin  u  , \cos  u  \cos  v  , 0)</math><br><math>X_{vv}=R(-  \cos u \sin v , - \sin u \sin v , -  \cos v )</math><br>
+
* <math>X_u=R(- \sin u  \sin v , \cos u  \sin v ,0)</math>:<math>X_v=R( \cos u  \cos v , \sin u  \cos v ,-\sin v)</math>:<math>N=(-\cos u \sin v, -\sin u \sin v, -\cos v)</math>:<math>X_{uu}=R(-\cos u \sin v , -\sin u \sin v ,0)</math>:<math>X_{uv}=R(-\cos  v  \sin  u  , \cos  u  \cos  v  , 0)</math>:<math>X_{vv}=R(-  \cos u \sin v , - \sin u \sin v , -  \cos v )</math><br>
  
 
 
 
 
37번째 줄: 37번째 줄:
 
==크리스토펠 기호==
 
==크리스토펠 기호==
  
* [[크리스토펠 기호]] 항목 참조<br><math>\Gamma^1_{11}=0</math><br><math>\Gamma^1_{12}=\cot v</math><br><math>\Gamma^1_{21}=\cot v</math><br><math>\Gamma^1_{22}=0</math><br><math>\Gamma^2_{11}=-\sin v \cos v</math><br><math>\Gamma^2_{12}=0</math><br><math>\Gamma^2_{21}=0</math><br><math>\Gamma^2_{22}=0</math><br>
+
* [[크리스토펠 기호]] 항목 참조:<math>\Gamma^1_{11}=0</math>:<math>\Gamma^1_{12}=\cot v</math>:<math>\Gamma^1_{21}=\cot v</math>:<math>\Gamma^1_{22}=0</math>:<math>\Gamma^2_{11}=-\sin v \cos v</math>:<math>\Gamma^2_{12}=0</math>:<math>\Gamma^2_{21}=0</math>:<math>\Gamma^2_{22}=0</math><br>
  
 
 
 
 
45번째 줄: 45번째 줄:
 
==리만 곡률 텐서==
 
==리만 곡률 텐서==
  
* [[리만 곡률 텐서]]<br><math>\begin{array}{ll}  \begin{array}{ll}  R_{111}^1 & 0 \\  R_{112}^1 & 0 \end{array}  &  \begin{array}{ll}  R_{121}^1 & 0 \\  R_{122}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^1 & 0 \\  R_{212}^1 & 1 \end{array}  &  \begin{array}{ll}  R_{221}^1 & -1 \\  R_{222}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{111}^2 & 0 \\  R_{112}^2 & -\sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{121}^2 & \sin ^2(v) \\  R_{122}^2 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^2 & 0 \\  R_{212}^2 & 0 \end{array}  &  \begin{array}{ll}  R_{221}^2 & 0 \\  R_{222}^2 & 0 \end{array}  \end{array}</math><br>
+
* [[리만 곡률 텐서]]:<math>\begin{array}{ll}  \begin{array}{ll}  R_{111}^1 & 0 \\  R_{112}^1 & 0 \end{array}  &  \begin{array}{ll}  R_{121}^1 & 0 \\  R_{122}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^1 & 0 \\  R_{212}^1 & 1 \end{array}  &  \begin{array}{ll}  R_{221}^1 & -1 \\  R_{222}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{111}^2 & 0 \\  R_{112}^2 & -\sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{121}^2 & \sin ^2(v) \\  R_{122}^2 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^2 & 0 \\  R_{212}^2 & 0 \end{array}  &  \begin{array}{ll}  R_{221}^2 & 0 \\  R_{222}^2 & 0 \end{array}  \end{array}</math><br>
*  covariant tensor<br><math>\begin{array}{ll}  \begin{array}{ll}  R_{1111} & 0 \\  R_{1112} & 0 \end{array}  &  \begin{array}{ll}  R_{1121} & 0 \\  R_{1122} & 0 \end{array}  \\  \begin{array}{ll}  R_{1211} & 0 \\  R_{1212} & R^2 \sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{1221} & -R^2 \sin ^2(v) \\  R_{1222} & 0 \end{array}  \\  \begin{array}{ll}  R_{2111} & 0 \\  R_{2112} & -R^2 \sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{2121} & R^2 \sin ^2(v) \\  R_{2122} & 0 \end{array}  \\  \begin{array}{ll}  R_{2211} & 0 \\  R_{2212} & 0 \end{array}  &  \begin{array}{ll}  R_{2221} & 0 \\  R_{2222} & 0 \end{array}  \end{array}</math><br>
+
*  covariant tensor:<math>\begin{array}{ll}  \begin{array}{ll}  R_{1111} & 0 \\  R_{1112} & 0 \end{array}  &  \begin{array}{ll}  R_{1121} & 0 \\  R_{1122} & 0 \end{array}  \\  \begin{array}{ll}  R_{1211} & 0 \\  R_{1212} & R^2 \sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{1221} & -R^2 \sin ^2(v) \\  R_{1222} & 0 \end{array}  \\  \begin{array}{ll}  R_{2111} & 0 \\  R_{2112} & -R^2 \sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{2121} & R^2 \sin ^2(v) \\  R_{2122} & 0 \end{array}  \\  \begin{array}{ll}  R_{2211} & 0 \\  R_{2212} & 0 \end{array}  &  \begin{array}{ll}  R_{2221} & 0 \\  R_{2222} & 0 \end{array}  \end{array}</math><br>
  
 
 
 
 
54번째 줄: 54번째 줄:
 
==측지선==
 
==측지선==
  
* [[측지선]] 이 만족시키는 미분방정식<br><math>\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0</math><br>
+
* [[측지선]] 이 만족시키는 미분방정식:<math>\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0</math><br>
*  풀어쓰면, <br><math>\frac{d^2 u}{dt^2} + 2\Gamma^{1}_{~1 2 }\frac{du }{dt}\frac{dv }{dt} = 0</math><br><math>\frac{d^2 v}{dt^2} + \Gamma^{2}_{~1 1 }\frac{du }{dt}\frac{du }{dt} = 0</math><br>
+
*  풀어쓰면, :<math>\frac{d^2 u}{dt^2} + 2\Gamma^{1}_{~1 2 }\frac{du }{dt}\frac{dv }{dt} = 0</math>:<math>\frac{d^2 v}{dt^2} + \Gamma^{2}_{~1 1 }\frac{du }{dt}\frac{du }{dt} = 0</math><br>
  
 
 
 
 
63번째 줄: 63번째 줄:
 
==가우스곡률==
 
==가우스곡률==
  
* [[가우스 곡률|가우스곡률]] 항목 참조<br><math>K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)</math><br>
+
* [[가우스 곡률|가우스곡률]] 항목 참조:<math>K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)</math><br>
*  반지름 R인 구면의 가우스곡률<br><math>K=\frac{1}{R^2}</math><br>
+
*  반지름 R인 구면의 가우스곡률:<math>K=\frac{1}{R^2}</math><br>
  
 
 
 
 
73번째 줄: 73번째 줄:
  
 
*  위의 좌표계에서 <math>u=\phi,v=\theta</math> 로 생각하자.<br>
 
*  위의 좌표계에서 <math>u=\phi,v=\theta</math> 로 생각하자.<br>
* [[라플라시안(Laplacian)|라플라시안]]<br><math>\Delta f = {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}={1 \over r^2 }({\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta} {\partial^2 f \over \partial \phi^2})</math><br>
+
* [[라플라시안(Laplacian)|라플라시안]]:<math>\Delta f = {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}={1 \over r^2 }({\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta} {\partial^2 f \over \partial \phi^2})</math><br>
  
 
 
 
 

2013년 1월 12일 (토) 09:14 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

매개화

  • 3차원상의 반지름이 R인 구면 \( x^2+y^2+z^2 = R^2\)
  • 매개화\[X(u,v)=R(\cos u \sin v, \sin u \sin v, \cos v)\]\[0<u<2\pi\], \(0<v<\pi\)
  • \(X_u=R(- \sin u \sin v , \cos u \sin v ,0)\)\[X_v=R( \cos u \cos v , \sin u \cos v ,-\sin v)\]\[N=(-\cos u \sin v, -\sin u \sin v, -\cos v)\]\[X_{uu}=R(-\cos u \sin v , -\sin u \sin v ,0)\]\[X_{uv}=R(-\cos v \sin u , \cos u \cos v , 0)\]\[X_{vv}=R(- \cos u \sin v , - \sin u \sin v , - \cos v )\]

 

 

제1기본형식 (메트릭 텐서)

  • \(E=R^2\sin^2 v\)
  • \(F=0\)
  • \(G=R^2\)

 

 

크리스토펠 기호

  • 크리스토펠 기호 항목 참조\[\Gamma^1_{11}=0\]\[\Gamma^1_{12}=\cot v\]\[\Gamma^1_{21}=\cot v\]\[\Gamma^1_{22}=0\]\[\Gamma^2_{11}=-\sin v \cos v\]\[\Gamma^2_{12}=0\]\[\Gamma^2_{21}=0\]\[\Gamma^2_{22}=0\]

 

 

리만 곡률 텐서

  • 리만 곡률 텐서\[\begin{array}{ll} \begin{array}{ll} R_{111}^1 & 0 \\ R_{112}^1 & 0 \end{array} & \begin{array}{ll} R_{121}^1 & 0 \\ R_{122}^1 & 0 \end{array} \\ \begin{array}{ll} R_{211}^1 & 0 \\ R_{212}^1 & 1 \end{array} & \begin{array}{ll} R_{221}^1 & -1 \\ R_{222}^1 & 0 \end{array} \\ \begin{array}{ll} R_{111}^2 & 0 \\ R_{112}^2 & -\sin ^2(v) \end{array} & \begin{array}{ll} R_{121}^2 & \sin ^2(v) \\ R_{122}^2 & 0 \end{array} \\ \begin{array}{ll} R_{211}^2 & 0 \\ R_{212}^2 & 0 \end{array} & \begin{array}{ll} R_{221}^2 & 0 \\ R_{222}^2 & 0 \end{array} \end{array}\]
  • covariant tensor\[\begin{array}{ll} \begin{array}{ll} R_{1111} & 0 \\ R_{1112} & 0 \end{array} & \begin{array}{ll} R_{1121} & 0 \\ R_{1122} & 0 \end{array} \\ \begin{array}{ll} R_{1211} & 0 \\ R_{1212} & R^2 \sin ^2(v) \end{array} & \begin{array}{ll} R_{1221} & -R^2 \sin ^2(v) \\ R_{1222} & 0 \end{array} \\ \begin{array}{ll} R_{2111} & 0 \\ R_{2112} & -R^2 \sin ^2(v) \end{array} & \begin{array}{ll} R_{2121} & R^2 \sin ^2(v) \\ R_{2122} & 0 \end{array} \\ \begin{array}{ll} R_{2211} & 0 \\ R_{2212} & 0 \end{array} & \begin{array}{ll} R_{2221} & 0 \\ R_{2222} & 0 \end{array} \end{array}\]

 

 

측지선

  • 측지선 이 만족시키는 미분방정식\[\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0\]
  • 풀어쓰면, \[\frac{d^2 u}{dt^2} + 2\Gamma^{1}_{~1 2 }\frac{du }{dt}\frac{dv }{dt} = 0\]\[\frac{d^2 v}{dt^2} + \Gamma^{2}_{~1 1 }\frac{du }{dt}\frac{du }{dt} = 0\]

 

 

가우스곡률

  • 가우스곡률 항목 참조\[K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)\]
  • 반지름 R인 구면의 가우스곡률\[K=\frac{1}{R^2}\]

 

 

라플라시안

  • 위의 좌표계에서 \(u=\phi,v=\theta\) 로 생각하자.
  • 라플라시안\[\Delta f = {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}={1 \over r^2 }({\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta} {\partial^2 f \over \partial \phi^2})\]

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

관련논문