"직교다항식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
31번째 줄: | 31번째 줄: | ||
− | ==초등함수== | + | ===초등함수=== |
* [[삼각함수]] | * [[삼각함수]] | ||
41번째 줄: | 41번째 줄: | ||
− | ==직교다항식== | + | ===직교다항식=== |
* [[자코비 다항식]] | * [[자코비 다항식]] | ||
51번째 줄: | 51번째 줄: | ||
− | + | ===초기하함수=== | |
− | |||
− | ==초기하함수== | ||
* [[초기하급수(Hypergeometric series)]] | * [[초기하급수(Hypergeometric series)]] | ||
61번째 줄: | 59번째 줄: | ||
− | |||
− | ==L-함수와 제타함수== | + | ===L-함수와 제타함수=== |
* [[L-함수, 제타함수와 디리클레 급수]] | * [[L-함수, 제타함수와 디리클레 급수]] | ||
70번째 줄: | 67번째 줄: | ||
− | |||
− | ==타원적분과 타원함수== | + | ===타원적분과 타원함수=== |
* [[자코비 세타함수]] | * [[자코비 세타함수]] | ||
81번째 줄: | 77번째 줄: | ||
* [[제1종타원적분 K (complete elliptic integral of the first kind)]] | * [[제1종타원적분 K (complete elliptic integral of the first kind)]] | ||
* [[베르누이 수|베르누이 수와 베르누이 다항식]] | * [[베르누이 수|베르누이 수와 베르누이 다항식]] | ||
+ | |||
101번째 줄: | 98번째 줄: | ||
− | == | + | ==리뷰, 에세이, 강의노트== |
− | + | * Kirillov, A. A., & Etingof, P. I. I. (1994). A unified representation-theoretic approach to special functions. Functional Analysis and Its Applications, 28(1), 73-76. | |
* [http://www.stephenwolfram.com/publications/recent/specialfunctions/ The History and Future of Special Functions] Stephen Wolfram, 2005 | * [http://www.stephenwolfram.com/publications/recent/specialfunctions/ The History and Future of Special Functions] Stephen Wolfram, 2005 | ||
* [http://www.jstor.org/stable/2321202 Ramanujan's Extensions of the Gamma and Beta Functions] Richard Askey, <cite>The American Mathematical Monthly</cite>, Vol. 87, No. 5 (May, 1980), pp. 346-359 | * [http://www.jstor.org/stable/2321202 Ramanujan's Extensions of the Gamma and Beta Functions] Richard Askey, <cite>The American Mathematical Monthly</cite>, Vol. 87, No. 5 (May, 1980), pp. 346-359 |
2014년 5월 3일 (토) 04:40 판
개요
- 직교다항식(orthogonal polynomials)
- 직교성과 완비성
- 3항 점화식 (3-term recurrence relation) 연분수와 관계
- 삼각함수 곱셈공식의 일반화 linearization of products
- 스텀-리우빌 문제
관련된 학부 과목과 미리 알고 있으면 좋은 것들
하위페이지
- 셀베르그 적분(Selberg integral)
- 구면조화함수(spherical harmonics)
- 르장드르 다항식
- 에르미트 다항식(Hermite polynomials)
- 오일러 베타적분
- 체비셰프 다항식
초등함수
직교다항식
- 자코비 다항식
- 구면조화함수(spherical harmonics)
- 라게르 다항식
- 윌슨 다항식
- 게겐바워 다항식(ultraspherical polynomials)
초기하함수
L-함수와 제타함수
타원적분과 타원함수
- 자코비 세타함수
- 타원함수
- 바이어슈트라스의 타원함수
- 타원적분
- 제1종타원적분 K (complete elliptic integral of the first kind)
- 베르누이 수와 베르누이 다항식
메모
- Difference Equations, Continued Fractions, and Orthogonal Polynomials (Walk Into a Bar) http://math.illinoisstate.edu/schebol/algebra-seminar-files/ortho.pdf
- Why is electrostatics in the complex plane interesting from a mathematical point of view?
- http://www.maths.leeds.ac.uk/~kisilv/courses/sp-funct.pdf
- 감마함수
- Digamma 함수
- 오일러 베타적분(베타함수)
관련된 항목들
리뷰, 에세이, 강의노트
- Kirillov, A. A., & Etingof, P. I. I. (1994). A unified representation-theoretic approach to special functions. Functional Analysis and Its Applications, 28(1), 73-76.
- The History and Future of Special Functions Stephen Wolfram, 2005
- Ramanujan's Extensions of the Gamma and Beta Functions Richard Askey, The American Mathematical Monthly, Vol. 87, No. 5 (May, 1980), pp. 346-359