"구면(sphere)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
8번째 줄: 8번째 줄:
  
 
* 3차원상의 반지름이 R인 구면 <math> x^2+y^2+z^2 = R^2</math>
 
* 3차원상의 반지름이 R인 구면 <math> x^2+y^2+z^2 = R^2</math>
* 매개화:<math>X(u,v)=R(\cos u \sin v, \sin u \sin v, \cos v)</math>:<math>0<u<2\pi,0<v<\pi</math><br>
+
* 매개화:<math>X(u,v)=R(\cos u \sin v, \sin u \sin v, \cos v)</math>:<math>0<u<2\pi,0<v<\pi</math>
 
* 미분
 
* 미분
:<math>X_u=R(- \sin u  \sin v , \cos u  \sin v ,0)</math>:<math>X_v=R( \cos u  \cos v , \sin u  \cos v ,-\sin v)</math>:<math>N=(-\cos u \sin v, -\sin u \sin v, -\cos v)</math>:<math>X_{uu}=R(-\cos u \sin v , -\sin u \sin v ,0)</math>:<math>X_{uv}=R(-\cos  v  \sin  u  , \cos  u  \cos  v  , 0)</math>:<math>X_{vv}=R(-  \cos u \sin v , - \sin u \sin v , -  \cos v )</math><br>
+
:<math>X_u=R(- \sin u  \sin v , \cos u  \sin v ,0)</math>:<math>X_v=R( \cos u  \cos v , \sin u  \cos v ,-\sin v)</math>:<math>N=(-\cos u \sin v, -\sin u \sin v, -\cos v)</math>:<math>X_{uu}=R(-\cos u \sin v , -\sin u \sin v ,0)</math>:<math>X_{uv}=R(-\cos  v  \sin  u  , \cos  u  \cos  v  , 0)</math>:<math>X_{vv}=R(-  \cos u \sin v , - \sin u \sin v , -  \cos v )</math>
  
  
24번째 줄: 24번째 줄:
 
==크리스토펠 기호==
 
==크리스토펠 기호==
  
* [[크리스토펠 기호]] 항목 참조:<math>\Gamma^1_{11}=0</math>:<math>\Gamma^1_{12}=\cot v</math>:<math>\Gamma^1_{21}=\cot v</math>:<math>\Gamma^1_{22}=0</math>:<math>\Gamma^2_{11}=-\sin v \cos v</math>:<math>\Gamma^2_{12}=0</math>:<math>\Gamma^2_{21}=0</math>:<math>\Gamma^2_{22}=0</math><br>
+
* [[크리스토펠 기호]] 항목 참조:<math>\Gamma^1_{11}=0</math>:<math>\Gamma^1_{12}=\cot v</math>:<math>\Gamma^1_{21}=\cot v</math>:<math>\Gamma^1_{22}=0</math>:<math>\Gamma^2_{11}=-\sin v \cos v</math>:<math>\Gamma^2_{12}=0</math>:<math>\Gamma^2_{21}=0</math>:<math>\Gamma^2_{22}=0</math>
  
  
32번째 줄: 32번째 줄:
 
==리만 곡률 텐서==
 
==리만 곡률 텐서==
  
* [[리만 곡률 텐서]]:<math>\begin{array}{ll}  \begin{array}{ll}  R_{111}^1 & 0 \\  R_{112}^1 & 0 \end{array}  &  \begin{array}{ll}  R_{121}^1 & 0 \\  R_{122}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^1 & 0 \\  R_{212}^1 & 1 \end{array}  &  \begin{array}{ll}  R_{221}^1 & -1 \\  R_{222}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{111}^2 & 0 \\  R_{112}^2 & -\sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{121}^2 & \sin ^2(v) \\  R_{122}^2 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^2 & 0 \\  R_{212}^2 & 0 \end{array}  &  \begin{array}{ll}  R_{221}^2 & 0 \\  R_{222}^2 & 0 \end{array}  \end{array}</math><br>
+
* [[리만 곡률 텐서]]:<math>\begin{array}{ll}  \begin{array}{ll}  R_{111}^1 & 0 \\  R_{112}^1 & 0 \end{array}  &  \begin{array}{ll}  R_{121}^1 & 0 \\  R_{122}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^1 & 0 \\  R_{212}^1 & 1 \end{array}  &  \begin{array}{ll}  R_{221}^1 & -1 \\  R_{222}^1 & 0 \end{array}  \\  \begin{array}{ll}  R_{111}^2 & 0 \\  R_{112}^2 & -\sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{121}^2 & \sin ^2(v) \\  R_{122}^2 & 0 \end{array}  \\  \begin{array}{ll}  R_{211}^2 & 0 \\  R_{212}^2 & 0 \end{array}  &  \begin{array}{ll}  R_{221}^2 & 0 \\  R_{222}^2 & 0 \end{array}  \end{array}</math>
*  covariant tensor:<math>\begin{array}{ll}  \begin{array}{ll}  R_{1111} & 0 \\  R_{1112} & 0 \end{array}  &  \begin{array}{ll}  R_{1121} & 0 \\  R_{1122} & 0 \end{array}  \\  \begin{array}{ll}  R_{1211} & 0 \\  R_{1212} & R^2 \sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{1221} & -R^2 \sin ^2(v) \\  R_{1222} & 0 \end{array}  \\  \begin{array}{ll}  R_{2111} & 0 \\  R_{2112} & -R^2 \sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{2121} & R^2 \sin ^2(v) \\  R_{2122} & 0 \end{array}  \\  \begin{array}{ll}  R_{2211} & 0 \\  R_{2212} & 0 \end{array}  &  \begin{array}{ll}  R_{2221} & 0 \\  R_{2222} & 0 \end{array}  \end{array}</math><br>
+
*  covariant tensor:<math>\begin{array}{ll}  \begin{array}{ll}  R_{1111} & 0 \\  R_{1112} & 0 \end{array}  &  \begin{array}{ll}  R_{1121} & 0 \\  R_{1122} & 0 \end{array}  \\  \begin{array}{ll}  R_{1211} & 0 \\  R_{1212} & R^2 \sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{1221} & -R^2 \sin ^2(v) \\  R_{1222} & 0 \end{array}  \\  \begin{array}{ll}  R_{2111} & 0 \\  R_{2112} & -R^2 \sin ^2(v) \end{array}  &  \begin{array}{ll}  R_{2121} & R^2 \sin ^2(v) \\  R_{2122} & 0 \end{array}  \\  \begin{array}{ll}  R_{2211} & 0 \\  R_{2212} & 0 \end{array}  &  \begin{array}{ll}  R_{2221} & 0 \\  R_{2222} & 0 \end{array}  \end{array}</math>
  
 
 
 
 
53번째 줄: 53번째 줄:
 
==가우스곡률==
 
==가우스곡률==
  
* [[가우스 곡률|가우스곡률]] 항목 참조:<math>K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)</math><br>
+
* [[가우스 곡률|가우스곡률]] 항목 참조:<math>K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)</math>
*  반지름 R인 구면의 가우스곡률:<math>K=\frac{1}{R^2}</math><br>
+
*  반지름 R인 구면의 가우스곡률:<math>K=\frac{1}{R^2}</math>
  
 
 
 
 
62번째 줄: 62번째 줄:
 
==라플라시안==
 
==라플라시안==
  
*  위의 좌표계에서 <math>u=\phi,v=\theta</math> 로 생각하자.<br>
+
*  위의 좌표계에서 <math>u=\phi,v=\theta</math> 로 생각하자.
* [[라플라시안(Laplacian)|라플라시안]]:<math>\Delta f = {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}={1 \over r^2 }({\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta} {\partial^2 f \over \partial \phi^2})</math><br>
+
* [[라플라시안(Laplacian)|라플라시안]]:<math>\Delta f = {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}={1 \over r^2 }({\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta} {\partial^2 f \over \partial \phi^2})</math>
  
 
 
 
 

2020년 11월 16일 (월) 06:30 판

개요


매개화

  • 3차원상의 반지름이 R인 구면 \( x^2+y^2+z^2 = R^2\)
  • 매개화\[X(u,v)=R(\cos u \sin v, \sin u \sin v, \cos v)\]\[0<u<2\pi,0<v<\pi\]
  • 미분

\[X_u=R(- \sin u \sin v , \cos u \sin v ,0)\]\[X_v=R( \cos u \cos v , \sin u \cos v ,-\sin v)\]\[N=(-\cos u \sin v, -\sin u \sin v, -\cos v)\]\[X_{uu}=R(-\cos u \sin v , -\sin u \sin v ,0)\]\[X_{uv}=R(-\cos v \sin u , \cos u \cos v , 0)\]\[X_{vv}=R(- \cos u \sin v , - \sin u \sin v , - \cos v )\]


제1기본형식 (메트릭 텐서)

  • \(E=R^2\sin^2 v\)
  • \(F=0\)
  • \(G=R^2\)


크리스토펠 기호

  • 크리스토펠 기호 항목 참조\[\Gamma^1_{11}=0\]\[\Gamma^1_{12}=\cot v\]\[\Gamma^1_{21}=\cot v\]\[\Gamma^1_{22}=0\]\[\Gamma^2_{11}=-\sin v \cos v\]\[\Gamma^2_{12}=0\]\[\Gamma^2_{21}=0\]\[\Gamma^2_{22}=0\]


 

리만 곡률 텐서

  • 리만 곡률 텐서\[\begin{array}{ll} \begin{array}{ll} R_{111}^1 & 0 \\ R_{112}^1 & 0 \end{array} & \begin{array}{ll} R_{121}^1 & 0 \\ R_{122}^1 & 0 \end{array} \\ \begin{array}{ll} R_{211}^1 & 0 \\ R_{212}^1 & 1 \end{array} & \begin{array}{ll} R_{221}^1 & -1 \\ R_{222}^1 & 0 \end{array} \\ \begin{array}{ll} R_{111}^2 & 0 \\ R_{112}^2 & -\sin ^2(v) \end{array} & \begin{array}{ll} R_{121}^2 & \sin ^2(v) \\ R_{122}^2 & 0 \end{array} \\ \begin{array}{ll} R_{211}^2 & 0 \\ R_{212}^2 & 0 \end{array} & \begin{array}{ll} R_{221}^2 & 0 \\ R_{222}^2 & 0 \end{array} \end{array}\]
  • covariant tensor\[\begin{array}{ll} \begin{array}{ll} R_{1111} & 0 \\ R_{1112} & 0 \end{array} & \begin{array}{ll} R_{1121} & 0 \\ R_{1122} & 0 \end{array} \\ \begin{array}{ll} R_{1211} & 0 \\ R_{1212} & R^2 \sin ^2(v) \end{array} & \begin{array}{ll} R_{1221} & -R^2 \sin ^2(v) \\ R_{1222} & 0 \end{array} \\ \begin{array}{ll} R_{2111} & 0 \\ R_{2112} & -R^2 \sin ^2(v) \end{array} & \begin{array}{ll} R_{2121} & R^2 \sin ^2(v) \\ R_{2122} & 0 \end{array} \\ \begin{array}{ll} R_{2211} & 0 \\ R_{2212} & 0 \end{array} & \begin{array}{ll} R_{2221} & 0 \\ R_{2222} & 0 \end{array} \end{array}\]

 

 

측지선

  • 측지선 이 만족시키는 미분방정식

\[\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0\]

  • 풀어쓰면,

\[\frac{d^2 u}{dt^2} + \Gamma^{1}_{~1 2 }\frac{du }{dt}\frac{dv }{dt} = 0\] \[\frac{d^2 v}{dt^2} + \Gamma^{2}_{~1 1 }\frac{du }{dt}\frac{du }{dt} = 0\]

 

 

가우스곡률

  • 가우스곡률 항목 참조\[K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)\]
  • 반지름 R인 구면의 가우스곡률\[K=\frac{1}{R^2}\]

 

 

라플라시안

  • 위의 좌표계에서 \(u=\phi,v=\theta\) 로 생각하자.
  • 라플라시안\[\Delta f = {1 \over r^2 \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}={1 \over r^2 }({\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta} {\partial^2 f \over \partial \phi^2})\]

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

사전 형태의 자료


리뷰, 에세이, 강의노트


관련논문

  • Neutsch, Wolfram. “Optimal Spherical Designs and Numerical Integration on the Sphere.” Journal of Computational Physics 51, no. 2 (August 1983): 313–25. doi:10.1016/0021-9991(83)90095-5.