"디랙 행렬"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* [[디랙 방정식]] 을 유도하는 과정에서 디랙에 의해 고안됨 | * [[디랙 방정식]] 을 유도하는 과정에서 디랙에 의해 고안됨 | ||
* [[해밀턴의 사원수(quarternions)]] 의 재발견 | * [[해밀턴의 사원수(quarternions)]] 의 재발견 | ||
+ | * [[클리포드 대수와 스피너]]의 예 | ||
− | + | ||
− | + | ||
− | + | ==정의== | |
<math>\begin{array}{l} \gamma ^0=\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) \\ \gamma ^1=\left( \begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{array} \right) \\ \gamma ^2=\left( \begin{array}{cccc} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{array} \right) \\ \gamma ^3=\left( \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right) \end{array}</math> | <math>\begin{array}{l} \gamma ^0=\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) \\ \gamma ^1=\left( \begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{array} \right) \\ \gamma ^2=\left( \begin{array}{cccc} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{array} \right) \\ \gamma ^3=\left( \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right) \end{array}</math> | ||
− | + | ||
− | + | ||
− | + | ==anticommutator 관계식== | |
− | * <math>\left\{\gamma | + | * <math>\left\{\gamma^i,\gamma^j\right\}=2\eta^{i j}I_4</math> 여기서<math>\eta^{i j}</math>는 (+ − − −). |
− | * 이로부터 4차원 민코프스키 공간 <math>E_{1,3}</math>의 [[클리포드 대수와 스피너|클리포드 대수]] | + | * 이로부터 4차원 민코프스키 공간 <math>E_{1,3}</math>의 [[클리포드 대수와 스피너|클리포드 대수]] <math>C(E_{1,3})</math> 를 얻을 수 있다 |
* 디랙 행렬은 <math>C(E_{1,3})</math> 의 4차원 표현(representation) 이라 할 수 있다 | * 디랙 행렬은 <math>C(E_{1,3})</math> 의 4차원 표현(representation) 이라 할 수 있다 | ||
− | + | ||
+ | ==디랙의 아이디어== | ||
+ | * [[클라인-고든 방정식]]에 등장하는 달랑베르시안 연산자 <math>\partial_0^2-\partial_1^2-\partial_2^2-\partial_3^2</math>의 제곱근을 찾으려는 시도 | ||
+ | * <math>D=\gamma^\mu \partial_\mu</math> 형태의 미분연산자가 <math>D^2=\partial_0^2-\partial_1^2-\partial_2^2-\partial_3^2</math> 를 만족시키기 위해서는 <math>\gamma^\mu</math> 사이에 다음의 관계가 성립해야 한다 | ||
+ | **<math>\gamma^{\mu}\gamma^{\mu}=\eta^{\mu \mu}</math> | ||
+ | **<math>\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=0, (\mu\neq \nu)</math> | ||
− | + | ||
− | + | ==역사== | |
− | + | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
− | + | ||
− | + | ||
− | + | ==메모== | |
− | + | ||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
− | + | ||
− | + | ||
− | + | ==관련된 항목들== | |
* [[디랙 방정식]] | * [[디랙 방정식]] | ||
− | + | ||
− | + | ||
− | + | ==수학용어번역== | |
* 단어사전<br> | * 단어사전<br> | ||
** http://translate.google.com/#en|ko| | ** http://translate.google.com/#en|ko| | ||
** http://ko.wiktionary.org/wiki/ | ** http://ko.wiktionary.org/wiki/ | ||
− | * | + | * 발음사전 http://www.forvo.com/search/ |
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | * [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | ||
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
− | + | ||
− | + | ||
− | + | ==매스매티카 파일 및 계산 리소스== | |
* https://docs.google.com/file/d/0B8XXo8Tve1cxRzFBUV9yZmlURjg/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxRzFBUV9yZmlURjg/edit | ||
90번째 줄: | 88번째 줄: | ||
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | * [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | ||
− | + | ||
− | + | ||
− | + | ==사전 형태의 자료== | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
102번째 줄: | 100번째 줄: | ||
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
− | + | ||
− | + | ||
− | + | ==리뷰논문, 에세이, 강의노트== | |
− | + | ||
− | + | ||
− | + | ||
− | + | ==관련논문== | |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
120번째 줄: | 118번째 줄: | ||
* http://dx.doi.org/ | * http://dx.doi.org/ | ||
− | + | ||
− | + | ||
− | + | ==관련도서== | |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 9월 4일 (화) 01:39 판
개요
- 디랙 방정식 을 유도하는 과정에서 디랙에 의해 고안됨
- 해밀턴의 사원수(quarternions) 의 재발견
- 클리포드 대수와 스피너의 예
정의
\(\begin{array}{l} \gamma ^0=\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) \\ \gamma ^1=\left( \begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{array} \right) \\ \gamma ^2=\left( \begin{array}{cccc} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{array} \right) \\ \gamma ^3=\left( \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right) \end{array}\)
anticommutator 관계식
- \(\left\{\gamma^i,\gamma^j\right\}=2\eta^{i j}I_4\) 여기서\(\eta^{i j}\)는 (+ − − −).
- 이로부터 4차원 민코프스키 공간 \(E_{1,3}\)의 클리포드 대수 \(C(E_{1,3})\) 를 얻을 수 있다
- 디랙 행렬은 \(C(E_{1,3})\) 의 4차원 표현(representation) 이라 할 수 있다
디랙의 아이디어
- 클라인-고든 방정식에 등장하는 달랑베르시안 연산자 \(\partial_0^2-\partial_1^2-\partial_2^2-\partial_3^2\)의 제곱근을 찾으려는 시도
- \(D=\gamma^\mu \partial_\mu\) 형태의 미분연산자가 \(D^2=\partial_0^2-\partial_1^2-\partial_2^2-\partial_3^2\) 를 만족시키기 위해서는 \(\gamma^\mu\) 사이에 다음의 관계가 성립해야 한다
- \(\gamma^{\mu}\gamma^{\mu}=\eta^{\mu \mu}\)
- \(\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=0, (\mu\neq \nu)\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxRzFBUV9yZmlURjg/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Gamma_matrices
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문