"코탄젠트"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
− | <h5 style=" | + | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">이 항목의 스프링노트 원문주소</h5> |
* [[코탄젠트]] | * [[코탄젠트]] | ||
27번째 줄: | 27번째 줄: | ||
<math>\cot x = \frac {1} {x} - \frac {x}{3} - \frac {x^3} {45} - \frac {2 x^5} {945} - \cdots = \sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!}</math> | <math>\cot x = \frac {1} {x} - \frac {x}{3} - \frac {x^3} {45} - \frac {2 x^5} {945} - \cdots = \sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!}</math> | ||
+ | |||
+ | <math>\cot x = \frac {1} {x} - \frac {x}{3} - \frac {x^3} {45} - \frac {2 x^5} {945} - \cdots = \sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!}</math> | ||
64번째 줄: | 66번째 줄: | ||
− | <h5 style=" | + | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">역사</h5> |
* [[수학사연표 (역사)|수학사연표]]<br> | * [[수학사연표 (역사)|수학사연표]]<br> | ||
72번째 줄: | 74번째 줄: | ||
− | <h5 style=" | + | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">많이 나오는 질문과 답변</h5> |
* 네이버 지식인<br> | * 네이버 지식인<br> | ||
82번째 줄: | 84번째 줄: | ||
− | <h5 style=" | + | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">관련된 고교수학 또는 대학수학</h5> |
* [[삼각함수]]<br> | * [[삼각함수]]<br> | ||
88번째 줄: | 90번째 줄: | ||
− | <h5 style=" | + | |
+ | |||
+ | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">관련된 다른 주제들</h5> | ||
* [[베르누이 수|베르누이 수와 베르누이 다항식]]<br> | * [[베르누이 수|베르누이 수와 베르누이 다항식]]<br> | ||
* [[아이젠슈타인 급수(Eisenstein series)]]<br> | * [[아이젠슈타인 급수(Eisenstein series)]]<br> | ||
− | * [[ | + | * [[ζ(4)와 슈테판-볼츠만 법칙]]<br> |
− | + | ||
− | + | ||
− | <h5 style=" | + | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">관련도서 및 추천도서</h5> |
* 도서내검색<br> | * 도서내검색<br> | ||
111번째 줄: | 115번째 줄: | ||
− | <h5 style=" | + | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">사전형태의 자료</h5> |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
121번째 줄: | 125번째 줄: | ||
− | <h5 style=" | + | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">관련기사</h5> |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
134번째 줄: | 138번째 줄: | ||
− | <h5 style=" | + | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">블로그</h5> |
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | ||
143번째 줄: | 147번째 줄: | ||
− | <h5 style=" | + | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">이미지 검색</h5> |
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search= | * http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search= | ||
151번째 줄: | 155번째 줄: | ||
− | <h5 style=" | + | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">동영상</h5> |
* http://www.youtube.com/results?search_type=&search_query= | * http://www.youtube.com/results?search_type=&search_query= | ||
* | * |
2010년 6월 24일 (목) 17:00 판
이 항목의 스프링노트 원문주소
개요
- 주기가 \(\pi\)인 주기함수
- 정의
\(\cot x = \frac{\cos x}{\sin x} \)
함수의 그래프
[/pages/3758315/attachments/3110865 cotangent.jpg]
코탄젠트의 테일러급수
\(\cot x = \frac {1} {x} - \frac {x}{3} - \frac {x^3} {45} - \frac {2 x^5} {945} - \cdots = \sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!}\)
\(\cot x = \frac {1} {x} - \frac {x}{3} - \frac {x^3} {45} - \frac {2 x^5} {945} - \cdots = \sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!}\)
코탄젠트의 부분분수 전개
\(\pi \cot \pi\tau=\frac{1}{\tau}+\sum_{m\neq0}\frac{1}{\tau+m}-\frac{1}{m}\)
코탄젠트의 푸리에급수
\(\cot \pi\tau=-i (1+2\sum_{r=1}^{\infty}e^{2\pi i r \tau})\)
(증명)
\(\cot \pi\tau=\frac{\cos \pi\tau}{\sin\pi\tau}=i \frac{e^{i\pi\tau}+e^{-i\pi\tau}}{e^{i\pi\tau}-e^{-i\pi\tau}}=i \frac{e^{2\pi i \tau}+1}{e^{2\pi i \tau}-1}\)
\(q=e^{2\pi i \tau}\) 로 두자.
\(\pi i \frac{q+1}{q-1}=\pi i (\frac{q}{q-1}+\frac{1}{q-1})=-\pi i (\sum_{r=1}^{\infty}q^r+\sum_{r=0}^{\infty}q^r)=-\pi i (1+2\sum_{r=1}^{\infty}q^r)\)■
(따름정리)
코탄젠트의 푸리에급수와 부분분수 전개를 비교하여, 다음을 얻는다.
\(\frac{1}{\tau}+\sum_{m\neq0}\frac{1}{\tau+m}-\frac{1}{m} = -\pi i (1+2\sum_{r=1}^{\infty}e^{2\pi i r \tau})\)
역사
많이 나오는 질문과 답변
- 네이버 지식인
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
사전형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Cotangent
- http://www.wolframalpha.com/input/?i=
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 네이버 블로그 검색 http://cafeblog.search.naver.com/search.naver?where=post&sm=tab_jum&query=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
- 스프링노트 http://www.springnote.com/search?stype=all&q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com