"타원함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
관련된 고교수학 또는 대학수학==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
63번째 줄: | 63번째 줄: | ||
− | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">관련된 고교수학 또는 대학수학 | + | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">관련된 고교수학 또는 대학수학== |
* [[삼각함수]]<br>[[삼각함수|삼각함수]][[복소함수론|복소함수론]]<br> | * [[삼각함수]]<br>[[삼각함수|삼각함수]][[복소함수론|복소함수론]]<br> | ||
72번째 줄: | 72번째 줄: | ||
− | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">관련된 항목들 | + | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">관련된 항목들== |
* [[자코비 세타함수]][[수학사연표 (역사)|수학사연표]]<br> | * [[자코비 세타함수]][[수학사연표 (역사)|수학사연표]]<br> | ||
80번째 줄: | 80번째 줄: | ||
− | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">관련도서 및 추천도서 | + | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">관련도서 및 추천도서== |
* <br>[http://www.amazon.com/Elliptic-Functions-Mathematical-Society-Student/dp/0521780780 Elliptic Functions] J. V. Armitage, W. F. Eberlein<br> | * <br>[http://www.amazon.com/Elliptic-Functions-Mathematical-Society-Student/dp/0521780780 Elliptic Functions] J. V. Armitage, W. F. Eberlein<br> | ||
92번째 줄: | 92번째 줄: | ||
− | ==관련논문 | + | ==관련논문== |
* [http://www.springerlink.com/content/b365w3511067g184/ In Search of the "Birthday" of Elliptic Functions - Bit by bit, the discoverers decided what it was they had discovered.]<br> | * [http://www.springerlink.com/content/b365w3511067g184/ In Search of the "Birthday" of Elliptic Functions - Bit by bit, the discoverers decided what it was they had discovered.]<br> | ||
112번째 줄: | 112번째 줄: | ||
− | ==사전 형태의 자료 | + | ==사전 형태의 자료== |
* [http://ko.wikipedia.org/wiki/%ED%83%80%EC%9B%90%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/타원함수] | * [http://ko.wikipedia.org/wiki/%ED%83%80%EC%9B%90%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/타원함수] | ||
127번째 줄: | 127번째 줄: | ||
− | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">관련기사 | + | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">관련기사== |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
** <br> | ** <br> | ||
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%ED%83%80%EC%9B%90%ED%95%A8%EC%88%98 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=타원함수] | ** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%ED%83%80%EC%9B%90%ED%95%A8%EC%88%98 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=타원함수] |
2012년 11월 1일 (목) 13:12 판
개요
- 이중주기를 갖는 복소함수.
- 주기성을 갖는 삼각함수는 원 위에 정의된 함수로 이해할 수 있듯이, 타원함수는 토러스 위에 정의된 함수로 생각할 수 있음.
- 아벨과 자코비에 의해 체계화
- 자코비 세타함수를 통해서도 이론을 구성할 수 있음.
타원적분의 역함수
바이어슈트라스의 타원함수
- [[바이어슈트라스 타원함수 \[WeierstrassP]|바이어슈트라스의 타원함수]] 항목 참조
삼각함수와 타원함수
- 타원함수는 두 세타함수의 비(quotient)로 얻어짐.
- 이러한 관점에서 \(\sin z\), \(\cos z\) 를 타원함수에 비유할 수 있고, \(\tan z=\frac{\sin z}{\cos z}\) 를 타원함수에 비유할 수 있음.
- \(\sin (z+\pi)=-\sin z\), \(\cos (z+\pi)=-\cos z\) 는 \(\chi : \mathhbb{Z} \to \{\pm1\}\) 로 주어지는 modular form
- 타원함수의 무한곱표현과 유사한 \(\sin z\), \(\cos z\) 의 무한곱표현도 있음.
- 둘의 비를 취함으로써, \(\tan (z+\pi)=\tan z\) 주기함수를 얻는다.
상위 주제
하위페이지
관련된 고교수학 또는 대학수학==
관련된 항목들==
관련도서 및 추천도서==
관련논문
- In Search of the "Birthday" of Elliptic Functions - Bit by bit, the discoverers decided what it was they had discovered.
- Rice, Adrian, 48-57
- Translation of "Recherches sur les fonctions elliptiques."
- N.H.Abel
- 번역 Marcus Emmanuel Barnes
- 타원함수에 대한 간략한 역사
- APPLICATIONS OF ELLIPTIC FUNCTIONS IN CLASSICAL AND ALGEBRAIC GEOMETRY
- Snape, J. R. (2004).
사전 형태의 자료
- http://ko.wikipedia.org/wiki/타원함수
- http://en.wikipedia.org/wiki/elliptic_functions
- http://en.wikipedia.org/wiki/Weierstrass_elliptic_function
- http://www.wolframalpha.com/input/?i=elliptic+functions
- The Online Encyclopaedia of Mathematics : Elliptic function
- NIST Digital Library of Mathematical Functions
관련기사==
- Rice, Adrian, 48-57
- N.H.Abel
- 번역 Marcus Emmanuel Barnes
- Snape, J. R. (2004).