"Continuant"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| 1번째 줄: | 1번째 줄: | ||
==개요==  | ==개요==  | ||
| − | *   | + | * <math>a_0,a_1,\cdots</math>는 변수  | 
| − | *   | + | * <math>p_0=a_0</math>, <math>q_0=1</math>로 두고 수열 <math>\{p_n\}_{n\geq 0}</math>과 <math>\{q_n\}_{n\geq 0}</math>을 다음과 같은 점화식을 이용하여 정의  | 
* <math>p_{n+1}=a_{n+1}p_n+p_{n-1}</math>  | * <math>p_{n+1}=a_{n+1}p_n+p_{n-1}</math>  | ||
* <math>q_{n+1}=a_{n+1}q_n+q_{n-1}</math>  | * <math>q_{n+1}=a_{n+1}q_n+q_{n-1}</math>  | ||
* [[연분수]]에서 등장한다  | * [[연분수]]에서 등장한다  | ||
* 다음이 성립  | * 다음이 성립  | ||
| − | + | :<math>  | |
\begin{vmatrix}  | \begin{vmatrix}  | ||
  p_{n} & p_{n+1} \\  |   p_{n} & p_{n+1} \\  | ||
  q_{n} & q_{n+1}  |   q_{n} & q_{n+1}  | ||
\end{vmatrix}=(-1)^{n+1}  | \end{vmatrix}=(-1)^{n+1}  | ||
| − | + | </math>  | |
2020년 11월 13일 (금) 08:46 판
개요
- \(a_0,a_1,\cdots\)는 변수
 - \(p_0=a_0\), \(q_0=1\)로 두고 수열 \(\{p_n\}_{n\geq 0}\)과 \(\{q_n\}_{n\geq 0}\)을 다음과 같은 점화식을 이용하여 정의
 - \(p_{n+1}=a_{n+1}p_n+p_{n-1}\)
 - \(q_{n+1}=a_{n+1}q_n+q_{n-1}\)
 - 연분수에서 등장한다
 - 다음이 성립
 
\[ \begin{vmatrix} p_{n} & p_{n+1} \\ q_{n} & q_{n+1} \end{vmatrix}=(-1)^{n+1} \]
매스매티카 파일 및 계산 리소스