"리만 곡률 텐서"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소==
  
 
* [[리만 곡률 텐서]]
 
* [[리만 곡률 텐서]]
7번째 줄: 7번째 줄:
 
 
 
 
  
==개요</h5>
+
==개요==
  
 
* [[접속 (connection)]]<math>\nabla</math>이 정의되어 있다고 하자
 
* [[접속 (connection)]]<math>\nabla</math>이 정의되어 있다고 하자
17번째 줄: 17번째 줄:
 
 
 
 
  
==리만 곡률 텐서의 성분</h5>
+
==리만 곡률 텐서의 성분==
  
 
* <math>{R^\rho}_{\sigma\mu\nu} = dx^\rho(R(\partial_{\mu},\partial_{\nu})\partial_{\sigma})</math>
 
* <math>{R^\rho}_{\sigma\mu\nu} = dx^\rho(R(\partial_{\mu},\partial_{\nu})\partial_{\sigma})</math>
26번째 줄: 26번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">곡률 2형식</h5>
+
<h5 style="margin: 0px; line-height: 2em;">곡률 2형식==
  
 
* <math>R(X,Y)\partial_{j}=\Omega_{j}^{s}(X,Y)\partial_s</math><br>
 
* <math>R(X,Y)\partial_{j}=\Omega_{j}^{s}(X,Y)\partial_s</math><br>
38번째 줄: 38번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">곡면의 경우</h5>
+
<h5 style="margin: 0px; line-height: 2em;">곡면의 경우==
  
 
*  제1기본형식이 <math>E=e(u,v),F=0,G=g(u,v)</math> 로 주어진 경우, 리만 곡률 텐서는 다음과 같다 (이외의 <math> R_{jkl}^i</math>는 0이다)<br><math> R_{212}^1 = \frac{e(u,v) \left(e^{(0,1)}(u,v) g^{(0,1)}(u,v)+g^{(1,0)}(u,v)^2\right)+g(u,v) \left(e^{(1,0)}(u,v) g^{(1,0)}(u,v)-2 e(u,v) \left(e^{(0,2)}(u,v)+g^{(2,0)}(u,v)\right)+e^{(0,1)}(u,v)^2\right)}{4 e(u,v)^2 g(u,v)}</math><br><math>R_{112}^2 = -\frac{e(u,v) \left(e^{(0,1)}(u,v) g^{(0,1)}(u,v)+g^{(1,0)}(u,v)^2\right)+g(u,v) \left(e^{(1,0)}(u,v) g^{(1,0)}(u,v)-2 e(u,v) \left(e^{(0,2)}(u,v)+g^{(2,0)}(u,v)\right)+e^{(0,1)}(u,v)^2\right)}{4 e(u,v) g(u,v)^2}</math><br><math>R_{221}^1 = -\frac{e(u,v) \left(e^{(0,1)}(u,v) g^{(0,1)}(u,v)+g^{(1,0)}(u,v)^2\right)+g(u,v) \left(e^{(1,0)}(u,v) g^{(1,0)}(u,v)-2 e(u,v) \left(e^{(0,2)}(u,v)+g^{(2,0)}(u,v)\right)+e^{(0,1)}(u,v)^2\right)}{4 e(u,v)^2 g(u,v)}</math><br><math>R_{121}^2 = \frac{e(u,v) \left(e^{(0,1)}(u,v) g^{(0,1)}(u,v)+g^{(1,0)}(u,v)^2\right)+g(u,v) \left(e^{(1,0)}(u,v) g^{(1,0)}(u,v)-2 e(u,v) \left(e^{(0,2)}(u,v)+g^{(2,0)}(u,v)\right)+e^{(0,1)}(u,v)^2\right)}{4 e(u,v) g(u,v)^2}</math><br>
 
*  제1기본형식이 <math>E=e(u,v),F=0,G=g(u,v)</math> 로 주어진 경우, 리만 곡률 텐서는 다음과 같다 (이외의 <math> R_{jkl}^i</math>는 0이다)<br><math> R_{212}^1 = \frac{e(u,v) \left(e^{(0,1)}(u,v) g^{(0,1)}(u,v)+g^{(1,0)}(u,v)^2\right)+g(u,v) \left(e^{(1,0)}(u,v) g^{(1,0)}(u,v)-2 e(u,v) \left(e^{(0,2)}(u,v)+g^{(2,0)}(u,v)\right)+e^{(0,1)}(u,v)^2\right)}{4 e(u,v)^2 g(u,v)}</math><br><math>R_{112}^2 = -\frac{e(u,v) \left(e^{(0,1)}(u,v) g^{(0,1)}(u,v)+g^{(1,0)}(u,v)^2\right)+g(u,v) \left(e^{(1,0)}(u,v) g^{(1,0)}(u,v)-2 e(u,v) \left(e^{(0,2)}(u,v)+g^{(2,0)}(u,v)\right)+e^{(0,1)}(u,v)^2\right)}{4 e(u,v) g(u,v)^2}</math><br><math>R_{221}^1 = -\frac{e(u,v) \left(e^{(0,1)}(u,v) g^{(0,1)}(u,v)+g^{(1,0)}(u,v)^2\right)+g(u,v) \left(e^{(1,0)}(u,v) g^{(1,0)}(u,v)-2 e(u,v) \left(e^{(0,2)}(u,v)+g^{(2,0)}(u,v)\right)+e^{(0,1)}(u,v)^2\right)}{4 e(u,v)^2 g(u,v)}</math><br><math>R_{121}^2 = \frac{e(u,v) \left(e^{(0,1)}(u,v) g^{(0,1)}(u,v)+g^{(1,0)}(u,v)^2\right)+g(u,v) \left(e^{(1,0)}(u,v) g^{(1,0)}(u,v)-2 e(u,v) \left(e^{(0,2)}(u,v)+g^{(2,0)}(u,v)\right)+e^{(0,1)}(u,v)^2\right)}{4 e(u,v) g(u,v)^2}</math><br>
46번째 줄: 46번째 줄:
 
 
 
 
  
==역사</h5>
+
==역사==
  
 
 
 
 
57번째 줄: 57번째 줄:
 
 
 
 
  
==메모</h5>
+
==메모==
  
 
* [http://www.math.sunysb.edu/%7Ebrweber/401s09/coursefiles/Lecture24.pdf http://www.math.sunysb.edu/~brweber/401s09/coursefiles/Lecture24.pdf]
 
* [http://www.math.sunysb.edu/%7Ebrweber/401s09/coursefiles/Lecture24.pdf http://www.math.sunysb.edu/~brweber/401s09/coursefiles/Lecture24.pdf]
68번째 줄: 68번째 줄:
 
 
 
 
  
==관련된 항목들</h5>
+
==관련된 항목들==
  
 
* [[접속 (connection)]]
 
* [[접속 (connection)]]
76번째 줄: 76번째 줄:
 
 
 
 
  
==매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxN2ZmMGViMGQtMmI4Ny00MmI3LWE4ZTYtYmQyNjZiYWVhMTc5&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxN2ZmMGViMGQtMmI4Ny00MmI3LWE4ZTYtYmQyNjZiYWVhMTc5&sort=name&layout=list&num=50
93번째 줄: 93번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
  
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
108번째 줄: 108번째 줄:
 
 
 
 
  
==사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
118번째 줄: 118번째 줄:
 
 
 
 
  
==리뷰논문, 에세이, 강의노트</h5>
+
==리뷰논문, 에세이, 강의노트==
  
 
* http://www.math.csusb.edu/faculty/dunn/lecture1.pdf
 
* http://www.math.csusb.edu/faculty/dunn/lecture1.pdf
126번째 줄: 126번째 줄:
 
 
 
 
  
==관련논문</h5>
+
==관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
136번째 줄: 136번째 줄:
 
 
 
 
  
==관련도서</h5>
+
==관련도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
146번째 줄: 146번째 줄:
 
 
 
 
  
==링크</h5>
+
==링크==
  
 
* [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math]
 
* [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math]
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=

2012년 11월 1일 (목) 13:48 판

이 항목의 수학노트 원문주소==    

개요

  • 접속 (connection)\(\nabla\)이 정의되어 있다고 하자
  • 세 개의 벡터장 X,Y,Z 가 주어지면, 새로운 벡터장 R(X,Y)Z 를 얻는다
    \(R(X,Y)Z=\nabla_X\nabla_YZ-\nabla_Y\nabla_XZ-\nabla_{[X,Y]}Z\)
  • covariant tensor

 

 

리만 곡률 텐서의 성분

  • \({R^\rho}_{\sigma\mu\nu} = dx^\rho(R(\partial_{\mu},\partial_{\nu})\partial_{\sigma})\)
  • 크리스토펠 기호 를 이용한 성분의 계산
    \({R^\rho}_{\sigma\mu\nu} = \partial_\mu\Gamma^\rho_{\nu\sigma} - \partial_\nu\Gamma^\rho_{\mu\sigma} + \Gamma^\rho_{\mu\lambda}\Gamma^\lambda_{\nu\sigma} - \Gamma^\rho_{\nu\lambda}\Gamma^\lambda_{\mu\sigma}\)
    \({R^l}_{kij} = \partial_i\Gamma^l_{jk} - \partial_j\Gamma^l_{ik} + \Gamma^l_{is}\Gamma^s_{jk} - \Gamma^l_{js}\Gamma^s_{ik}\)
    \(R_{\rho\sigma\mu\nu} = g_{\rho \zeta} {R^\zeta}_{\sigma\mu\nu} .\)

 

 

곡률 2형식==
  • \(R(X,Y)\partial_{j}=\Omega_{j}^{s}(X,Y)\partial_s\)
  • \(\,\Omega=d\omega +\frac{1}{2}[\omega,\omega]=d\omega +\omega\wedge \omega\)
  • \(\Omega^i_{j}=d\omega^i_{j} +\sum_k \omega^i_{k}\wedge\omega^k_{j}\)
     
곡면의 경우==
  • 제1기본형식이 \(E=e(u,v),F=0,G=g(u,v)\) 로 주어진 경우, 리만 곡률 텐서는 다음과 같다 (이외의 \( R_{jkl}^i\)는 0이다)
    \( R_{212}^1 = \frac{e(u,v) \left(e^{(0,1)}(u,v) g^{(0,1)}(u,v)+g^{(1,0)}(u,v)^2\right)+g(u,v) \left(e^{(1,0)}(u,v) g^{(1,0)}(u,v)-2 e(u,v) \left(e^{(0,2)}(u,v)+g^{(2,0)}(u,v)\right)+e^{(0,1)}(u,v)^2\right)}{4 e(u,v)^2 g(u,v)}\)
    \(R_{112}^2 = -\frac{e(u,v) \left(e^{(0,1)}(u,v) g^{(0,1)}(u,v)+g^{(1,0)}(u,v)^2\right)+g(u,v) \left(e^{(1,0)}(u,v) g^{(1,0)}(u,v)-2 e(u,v) \left(e^{(0,2)}(u,v)+g^{(2,0)}(u,v)\right)+e^{(0,1)}(u,v)^2\right)}{4 e(u,v) g(u,v)^2}\)
    \(R_{221}^1 = -\frac{e(u,v) \left(e^{(0,1)}(u,v) g^{(0,1)}(u,v)+g^{(1,0)}(u,v)^2\right)+g(u,v) \left(e^{(1,0)}(u,v) g^{(1,0)}(u,v)-2 e(u,v) \left(e^{(0,2)}(u,v)+g^{(2,0)}(u,v)\right)+e^{(0,1)}(u,v)^2\right)}{4 e(u,v)^2 g(u,v)}\)
    \(R_{121}^2 = \frac{e(u,v) \left(e^{(0,1)}(u,v) g^{(0,1)}(u,v)+g^{(1,0)}(u,v)^2\right)+g(u,v) \left(e^{(1,0)}(u,v) g^{(1,0)}(u,v)-2 e(u,v) \left(e^{(0,2)}(u,v)+g^{(2,0)}(u,v)\right)+e^{(0,1)}(u,v)^2\right)}{4 e(u,v) g(u,v)^2}\)
   

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

 

 

수학용어번역==      

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

관련논문

 

 

관련도서

 

 

링크