"맥스웰 방정식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
23번째 줄: | 23번째 줄: | ||
− | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">파동방정식의 유도</h5> | |
− | |||
− | <h5 style="margin: 0px; line-height: | ||
* 미분연산자 사이에는 다음과 같은 항등식이 성립 ([[다변수미적분학]] 항목 참조)<br><math>\nabla \times (\nabla \times \mathbf{E})=\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E}</math><br><math> \nabla^2 \mathbf{E}= \nabla (\nabla \cdot \mathbf{E}) - \nabla \times (\nabla \times \mathbf{E})</math><br> | * 미분연산자 사이에는 다음과 같은 항등식이 성립 ([[다변수미적분학]] 항목 참조)<br><math>\nabla \times (\nabla \times \mathbf{E})=\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E}</math><br><math> \nabla^2 \mathbf{E}= \nabla (\nabla \cdot \mathbf{E}) - \nabla \times (\nabla \times \mathbf{E})</math><br> | ||
41번째 줄: | 39번째 줄: | ||
− | <h5 style="margin: 0px; line-height: | + | |
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">미분형식을 통한 표현</h5> | ||
* [[미분형식과 맥스웰 방정식|맥스웰 방정식과 미분형식]]<br> | * [[미분형식과 맥스웰 방정식|맥스웰 방정식과 미분형식]]<br> |
2012년 6월 11일 (월) 04:50 판
이 항목의 스프링노트 원문주소
개요
- 전기장에 대한 가우스의 법칙
\(\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}\) - 자기장에 대한 가우스의 법칙
\(\nabla \cdot \mathbf{B} = 0\) - 패러데이의 법칙
\(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}\)
- 앙페르-패러데이 법칙
\(\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ \)
파동방정식의 유도
- 미분연산자 사이에는 다음과 같은 항등식이 성립 (다변수미적분학 항목 참조)
\(\nabla \times (\nabla \times \mathbf{E})=\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E}\)
\( \nabla^2 \mathbf{E}= \nabla (\nabla \cdot \mathbf{E}) - \nabla \times (\nabla \times \mathbf{E})\) - 전기장에 대한 가우스의 법칙과 패러데이의 법칙으로부터 다음을 얻는다
\(\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}\), \(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}\)
\( \nabla^2 \mathbf{E}= \nabla \frac {\rho} {\varepsilon_0} + \nabla \times \frac{\partial \mathbf{B}} {\partial t}=\nabla \frac {\rho} {\varepsilon_0} + \frac{\partial (\nabla \times \mathbf{B})} {\partial t}\) - 앙페르-패러데이 법칙으로부터 다음을 얻는다
\(\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ \)
\( \nabla^2 \mathbf{E}= \nabla \frac {\rho} {\varepsilon_0} + \frac{\partial (\mu_0\mathbf{J} +\mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ )} {\partial t}=\nabla \frac {\rho} {\varepsilon_0} + \mu_0\frac{\partial \mathbf{J} }{\partial t} +\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}} {\partial t^2}\)
- \(\rho=0, \mathbf{J}=0 \)인 곳에서 전기장은 파동방정식을 만족시키게 된다
\( \nabla^2 \mathbf{E}= \mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}} {\partial t^2}\)
미분형식을 통한 표현
역사
메모
관련된 항목들
수학용어번역