"삼각치환"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
29번째 줄: 29번째 줄:
  
 
*  다음과 같은 치환적분을 사용 (이를 [[바이어슈트라스 치환]] 이라 한다)<br><math>t=\tan \frac{x}{2}</math>, <math>\frac{dx}{dt}=\frac{2}{1+t^2}</math>, <math>\sin x=\frac{2t}{1+t^2}</math>, <math>\cos x=\frac{1-t^2}{1+t^2}</math><br><math>\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt</math><br>
 
*  다음과 같은 치환적분을 사용 (이를 [[바이어슈트라스 치환]] 이라 한다)<br><math>t=\tan \frac{x}{2}</math>, <math>\frac{dx}{dt}=\frac{2}{1+t^2}</math>, <math>\sin x=\frac{2t}{1+t^2}</math>, <math>\cos x=\frac{1-t^2}{1+t^2}</math><br><math>\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt</math><br>
*  <br>
+
* <math>R(\cosh x, \sinh x)</math>의 적분<br>
 
 
<math>R(\cosh x, \sinh x)</math>의 적분
 
  
 
*  다음과 같은 치환적분을 사용<br><math>t=\tanh \frac{x}{2}</math>, <math>\frac{dx}{dt}=\frac{2}{1-t^2}</math>, <math>\sinh x=\frac{2t}{1-t^2}</math>, <math>\cosh x=\frac{1+t^2}{1-t^2}</math><br><math>\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt</math><br>
 
*  다음과 같은 치환적분을 사용<br><math>t=\tanh \frac{x}{2}</math>, <math>\frac{dx}{dt}=\frac{2}{1-t^2}</math>, <math>\sinh x=\frac{2t}{1-t^2}</math>, <math>\cosh x=\frac{1+t^2}{1-t^2}</math><br><math>\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt</math><br>
82번째 줄: 80번째 줄:
 
* [http://ko.wikipedia.org/wiki/%EC%82%BC%EA%B0%81%EC%B9%98%ED%99%98 http://ko.wikipedia.org/wiki/삼각치환][http://en.wikipedia.org/wiki/Tangent_half-angle_formula ]
 
* [http://ko.wikipedia.org/wiki/%EC%82%BC%EA%B0%81%EC%B9%98%ED%99%98 http://ko.wikipedia.org/wiki/삼각치환][http://en.wikipedia.org/wiki/Tangent_half-angle_formula ]
 
* http://en.wikipedia.org/wiki/Trigonometric_substitution
 
* http://en.wikipedia.org/wiki/Trigonometric_substitution
* http://www.wolframalpha.com/input/?i=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
  
 
 
 
 
92번째 줄: 88번째 줄:
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
+
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EC%82%BC%EA%B0%81%EC%B9%98%ED%99%98 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=삼각치환]
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=

2011년 3월 22일 (화) 12:06 판

이 항목의 스프링노트 원문주소

 

 

개요
  • \(R(x,\sqrt{1-x^2})\)의 적분
    \(x=\cos u\) 치환을 사용하면, \(R'(\cos x, \sin x)\) 의 적분으로 변화
  • \(R(x,\sqrt{x^2-1})\)의 적분
    \(x=\cosh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화
  • \(R(x,\sqrt{x^2+1})\)의 적분
    \(x=\sinh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화
  • \(R(x,\sqrt{ax^2+bx+c})\)의 적분
    \(ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}\) 으로 쓴 다음
  • \(ac-b^2\)와 \(a\)의 부호에 따라, 적당히 치환하여 위의 경우로 끌고가면 끝.
    오일러치환 항목 참조

 

 

삼각치환의 이론적 근거
  • 다음의 사실들을 알고 있어야 한다
    • 유리함수의 부정적분은 초등함수로 쓸수 있다
    • '이차곡선은 유리함수로 매개화 가능' 하다
      즉, \(y^2=ax^2+bx+c\) 라는 곡선을, 유리함수 \(f,g\)를 사용하여 \(x=f(t), y=g(t)\) 형태로 매개화할 수 있기 때문이다. 
    • 삼각함수와 쌍곡함수들은 이차곡선을 매개화한다
  • \(R(x,y)\)는 \(x,y\)의 유리함수라고 가정
  • \(R(\cos x, \sin x)\)의 적분
  • 다음과 같은 치환적분을 사용 (이를 바이어슈트라스 치환 이라 한다)
    \(t=\tan \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1+t^2}\), \(\sin x=\frac{2t}{1+t^2}\), \(\cos x=\frac{1-t^2}{1+t^2}\)
    \(\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt\)
  • \(R(\cosh x, \sinh x)\)의 적분
  • 다음과 같은 치환적분을 사용
    \(t=\tanh \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1-t^2}\), \(\sinh x=\frac{2t}{1-t^2}\), \(\cosh x=\frac{1+t^2}{1-t^2}\)
    \(\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt\)

 

 

역사

 

 

관련된 항목들

 

 

관련도서 및 추천도서

 

 

수학용어번역

 

 

사전형태의 자료

 

 

관련기사

 

 

블로그