"삼각치환"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
66번째 줄: | 66번째 줄: | ||
− | + | ||
− | + | http://mathworld.wolfram.com/TrigonometricSubstitution.html | |
− | + | ||
− | + | ||
80번째 줄: | 80번째 줄: | ||
* [http://ko.wikipedia.org/wiki/%EC%82%BC%EA%B0%81%EC%B9%98%ED%99%98 http://ko.wikipedia.org/wiki/삼각치환][http://en.wikipedia.org/wiki/Tangent_half-angle_formula ] | * [http://ko.wikipedia.org/wiki/%EC%82%BC%EA%B0%81%EC%B9%98%ED%99%98 http://ko.wikipedia.org/wiki/삼각치환][http://en.wikipedia.org/wiki/Tangent_half-angle_formula ] | ||
* http://en.wikipedia.org/wiki/Trigonometric_substitution | * http://en.wikipedia.org/wiki/Trigonometric_substitution | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
98번째 줄: | 87번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5> | ||
− | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | + | * <br> |
− | + | * 구글 블로그 검색 [http://blogsearch.google.com/blogsearch?q=%EC%82%BC%EA%B0%81%EC%B9%98%ED%99%98 http://blogsearch.google.com/blogsearch?q=삼각치환] |
2011년 3월 22일 (화) 12:16 판
이 항목의 스프링노트 원문주소
개요
- \(R(x,\sqrt{1-x^2})\)의 적분
\(x=\cos u\) 치환을 사용하면, \(R'(\cos x, \sin x)\) 의 적분으로 변화 - \(R(x,\sqrt{x^2-1})\)의 적분
\(x=\cosh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화 - \(R(x,\sqrt{x^2+1})\)의 적분
\(x=\sinh u\) 치환을 사용하면, \(R'(\cosh x, \sinh x)\)의 적분으로 변화 - \(R(x,\sqrt{ax^2+bx+c})\)의 적분
\(ax^2+bx+c=\frac{1}{a}\{(ax+b)^2+{ac-b^2}}\}\) 으로 쓴 다음 - \(ac-b^2\)와 \(a\)의 부호에 따라, 적당히 치환하여 위의 경우로 끌고가면 끝.
오일러치환 항목 참조
삼각치환의 이론적 근거
- 다음의 사실들을 알고 있어야 한다
- 유리함수의 부정적분은 초등함수로 쓸수 있다
- '이차곡선은 유리함수로 매개화 가능' 하다
즉, \(y^2=ax^2+bx+c\) 라는 곡선을, 유리함수 \(f,g\)를 사용하여 \(x=f(t), y=g(t)\) 형태로 매개화할 수 있기 때문이다. - 삼각함수와 쌍곡함수들은 이차곡선을 매개화한다
- 유리함수의 부정적분은 초등함수로 쓸수 있다
- \(R(x,y)\)는 \(x,y\)의 유리함수라고 가정
- \(R(\cos x, \sin x)\)의 적분
- 다음과 같은 치환적분을 사용 (이를 바이어슈트라스 치환 이라 한다)
\(t=\tan \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1+t^2}\), \(\sin x=\frac{2t}{1+t^2}\), \(\cos x=\frac{1-t^2}{1+t^2}\)
\(\int R(\cos x, \sin x) \,dx= \int R(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})\frac{2}{1+t^2}\,dt\) - \(R(\cosh x, \sinh x)\)의 적분
- 다음과 같은 치환적분을 사용
\(t=\tanh \frac{x}{2}\), \(\frac{dx}{dt}=\frac{2}{1-t^2}\), \(\sinh x=\frac{2t}{1-t^2}\), \(\cosh x=\frac{1+t^2}{1-t^2}\)
\(\int R(\cosh x, \sinh x) \,dx= \int R(\frac{1+t^2}{1-t^2}, \frac{2t}{1-t^2})\frac{2}{1-t^2}\,dt\)
역사
관련된 항목들
관련도서 및 추천도서
- 도서내검색
- 도서검색
http://mathworld.wolfram.com/TrigonometricSubstitution.html
사전형태의 자료