"타원적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
2번째 줄: 2번째 줄:
  
 
*  먼저 [[타원적분론 입문|타원적분 입문]] 참조<br>
 
*  먼저 [[타원적분론 입문|타원적분 입문]] 참조<br>
* <math>R(x,y)</math>는  <math>x,y</math>의 유리함수이고, <math>y^2</math>은 <math>x</math>의 3차 또는 4차식<br><math>\int R(x,\sqrt{ax^3+bx^2+cx+d}) \,dx</math> 또는<br><math>\int R(x,\sqrt{ax^4+bx^3+cx^2+dx+e}) \,dx</math><br>
+
* <math>R(x,y)</math>는  <math>x,y</math>의 유리함수이고, <math>y^2</math>은 <math>x</math>의 3차 또는 4차식:<math>\int R(x,\sqrt{ax^3+bx^2+cx+d}) \,dx</math> 또는:<math>\int R(x,\sqrt{ax^4+bx^3+cx^2+dx+e}) \,dx</math><br>
  
 
 
 
 
10번째 줄: 10번째 줄:
  
 
* 역사적으로 [[타원 둘레의 길이]]를 구하는 적분에서 그 이름이 기원함.
 
* 역사적으로 [[타원 둘레의 길이]]를 구하는 적분에서 그 이름이 기원함.
*  타원  <math>\frac{x^2}{a^2}+\frac{y^2}{b^2}=1</math>의 둘레의 길이는 <math>4aE(k)</math> 로 주어짐.<br><math>k=\sqrt{1-\frac{b^2}{a^2}}</math><br><math>E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math><br>
+
*  타원  <math>\frac{x^2}{a^2}+\frac{y^2}{b^2}=1</math>의 둘레의 길이는 <math>4aE(k)</math> 로 주어짐.:<math>k=\sqrt{1-\frac{b^2}{a^2}}</math>:<math>E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math><br>
  
 
 
 
 
21번째 줄: 21번째 줄:
 
여기서 <math>R(x,y)</math>는 <math>x,y</math>의 유리함수, <math>y^2</math>= 중근을 갖지 않는 <math>x</math>의 3차식 또는 4차식.
 
여기서 <math>R(x,y)</math>는 <math>x,y</math>의 유리함수, <math>y^2</math>= 중근을 갖지 않는 <math>x</math>의 3차식 또는 4차식.
  
*  예를 들자면,<br>  <math>\int \frac{dx}{\sqrt{1-x^4}}</math><br><math>\int \frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math><br>  <br>
+
*  예를 들자면,<br>  <math>\int \frac{dx}{\sqrt{1-x^4}}</math>:<math>\int \frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math><br>  <br>
  
 
 
 
 
27번째 줄: 27번째 줄:
 
==일종타원적분과 이종타원적분==
 
==일종타원적분과 이종타원적분==
  
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]<br><math>K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math><br><math>K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math><br>
+
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]:<math>K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math>:<math>K(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;k^2)</math><br>
* [[제2종타원적분 E (complete elliptic integral of the second kind)]]<br><math>E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math><br><math>E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)</math><br>
+
* [[제2종타원적분 E (complete elliptic integral of the second kind)]]:<math>E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math>:<math>E(k) =\frac{\pi}{2}\,_2F_1(\frac{1}{2},-\frac{1}{2};1;k^2)</math><br>
 
* <math>\,_2F_1(a,b;c;z)</math>는 [[초기하급수(Hypergeometric series)]]
 
* <math>\,_2F_1(a,b;c;z)</math>는 [[초기하급수(Hypergeometric series)]]
  
56번째 줄: 56번째 줄:
 
==덧셈공식==
 
==덧셈공식==
  
*  파그나노의 공식<br><math>\int_0^x{\frac{1}{\sqrt{1-x^4}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^4}}}dx = \int_0^{A(x,y)}{\frac{1}{\sqrt{1-x^4}}}dx</math><br> 여기서 <math>A(x,y)=\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2}</math><br>
+
*  파그나노의 공식:<math>\int_0^x{\frac{1}{\sqrt{1-x^4}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^4}}}dx = \int_0^{A(x,y)}{\frac{1}{\sqrt{1-x^4}}}dx</math><br> 여기서 <math>A(x,y)=\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2}</math><br>
*  오일러의 일반화<br><math>p(x)=1+mx^2+nx^4</math>일 때,<br><math>\int_0^x{\frac{1}{\sqrt{p(x)}}}dx+\int_0^y{\frac{1}{\sqrt{p(x)}}}dx = \int_0^{B(x,y)}{\frac{1}{\sqrt{p(x)}}}dx</math><br> 여기서 <math>B(x,y)=\frac{x\sqrt{p(y)}+y\sqrt{p(x)}}{1-nx^2y^2}</math><br>
+
*  오일러의 일반화:<math>p(x)=1+mx^2+nx^4</math>일 때,:<math>\int_0^x{\frac{1}{\sqrt{p(x)}}}dx+\int_0^y{\frac{1}{\sqrt{p(x)}}}dx = \int_0^{B(x,y)}{\frac{1}{\sqrt{p(x)}}}dx</math><br> 여기서 <math>B(x,y)=\frac{x\sqrt{p(y)}+y\sqrt{p(x)}}{1-nx^2y^2}</math><br>
  
 
 
 
 

2013년 1월 12일 (토) 09:30 판

개요

  • 먼저 타원적분 입문 참조
  • \(R(x,y)\)는  \(x,y\)의 유리함수이고, \(y^2\)은 \(x\)의 3차 또는 4차식\[\int R(x,\sqrt{ax^3+bx^2+cx+d}) \,dx\] 또는\[\int R(x,\sqrt{ax^4+bx^3+cx^2+dx+e}) \,dx\]

 

 

타원 둘레의 길이

  • 역사적으로 타원 둘레의 길이를 구하는 적분에서 그 이름이 기원함.
  • 타원  \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)의 둘레의 길이는 \(4aE(k)\) 로 주어짐.\[k=\sqrt{1-\frac{b^2}{a^2}}\]\[E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\]

 

정의

  • 일반적으로 다음과 같은 형태로 주어지는 적분을 타원적분이라 부름

\(\int R(x,y)\,dx\)

여기서 \(R(x,y)\)는 \(x,y\)의 유리함수, \(y^2\)= 중근을 갖지 않는 \(x\)의 3차식 또는 4차식.

  • 예를 들자면,
     \(\int \frac{dx}{\sqrt{1-x^4}}\)\[\int \frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\]
     

 

일종타원적분과 이종타원적분

 

 

르장드르의 항등식

  • 일종타원적분과 이종타원적분 사이에는 다음과 같은 관계가 성립

\(E(k)K'(k)+E'(k)K(k)-K(k)K'(k)=\frac{\pi}{2}\)

또는 \(\theta+\phi=\frac{\pi}{2}\) 에 대하여

\(E(\sin\theta)K(\sin\phi)+E(\sin\phi)K(\sin\theta)-K(\sin\theta)K(\sin\phi)=\frac{\pi}{2}\)

  • 특별히 다음과 같은 관계가 성립함

\(2K(\frac{1}{\sqrt{2}})E(\frac{1}{\sqrt{2}})-K(\frac{1}{\sqrt{2}})^2=\frac{\pi}{2}\)

AGM과 파이값의 계산에 응용

 

 

덧셈공식

  • 파그나노의 공식\[\int_0^x{\frac{1}{\sqrt{1-x^4}}}dx+\int_0^y{\frac{1}{\sqrt{1-x^4}}}dx = \int_0^{A(x,y)}{\frac{1}{\sqrt{1-x^4}}}dx\]
    여기서 \(A(x,y)=\frac{x\sqrt{1-y^4}+y\sqrt{1-x^4}}{1+x^2y^2}\)
  • 오일러의 일반화\[p(x)=1+mx^2+nx^4\]일 때,\[\int_0^x{\frac{1}{\sqrt{p(x)}}}dx+\int_0^y{\frac{1}{\sqrt{p(x)}}}dx = \int_0^{B(x,y)}{\frac{1}{\sqrt{p(x)}}}dx\]
    여기서 \(B(x,y)=\frac{x\sqrt{p(y)}+y\sqrt{p(x)}}{1-nx^2y^2}\)

 

 

메모

 

 

하위페이지

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

 

관련도서

   

 

블로그