"연분수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 15개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
 +
* 다음과 같은 형태로 주어지는 수를 연분수라 한다
 +
:<math>a_0+\frac{b_1}{a_1+\frac{b_2}{a_2+\frac{b_3}{a_3+\frac{b_4}{a_4+\frac{b_5}{a_5+\frac{b_6}{a_6+\frac{b_7}{a_7+\frac{b_8}{a_8+\frac{b_9}{a_9+\frac{b_{10}}{a_{10}}}}}}}}}}}</math>
 +
* 다음과 같은 경우를 단순연분수라 한다
 +
:<math>
 +
c=a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{a_3+\frac{1}{a_4+\frac{1}{a_5+\cdots}}}}}
 +
</math>
 +
* 이를 <math>c=[a_0;a_1,a_2,\cdots]</math>로 표현한다
 +
* convergents <math>c_n=[a_0;a_1,a_2,\cdots,a_n]</math>를 정의
 +
* <math>c_n</math>의 분자 <math>p_n</math>와 분모 <math>q_n</math>로 이루어진 수열에 대하여 다음이 성립한다
 +
** <math>
 +
\begin{vmatrix}
 +
p_{n} & p_{n+1} \\
 +
q_{n} & q_{n+1}
 +
\end{vmatrix}=(-1)^{n+1}
 +
</math>
 +
** <math>p_{n+1}=a_{n+1}p_n+p_{n-1}</math>
 +
** <math>q_{n+1}=a_{n+1}q_n+q_{n-1}</math>
 +
* <math>p_n</math>과 <math>q_n</math>에 대해서는 [[Continuant]] 항목을 참조
 +
  
<math>a_0+\frac{b_1}{a_1+\frac{b_2}{a_2+\frac{b_3}{a_3+\frac{b_4}{a_4+\frac{b_5}{a_5+\frac{b_6}{a_6+\frac{b_7}{a_7+\frac{b_8}{a_8+\frac{b_9}{a_9+\frac{b_{10}}{a_{10}}}}}}}}}}}</math>
 
 
 
 
 
==예==
 
==예==
* 루트 2의 연분수 전개는 $[1;2,2,2,\cdots]$, 즉 다음과 같이 주어진다
+
===루트 2===
 +
* 루트 2의 연분수 전개는 <math>[1;2,2,2,\cdots]</math>, 즉 다음과 같이 주어진다
 
:<math>\sqrt{2}=1+\cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \ddots}}}</math>
 
:<math>\sqrt{2}=1+\cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \ddots}}}</math>
* convergents $\{c_n\}_{n\geq 0}$는 다음과 같이 주어진다
+
* convergents <math>\{c_n\}_{n\geq 0}</math>는 다음과 같이 주어진다
:<math>1,\frac{3}{2},\frac{7}{5},\frac{17}{12},\frac{41}{29},\frac{99}{70},\frac{239}{169},\frac{577}{408},\frac{1393}{985},\frac{3363}{2378},\cdots </math>
+
:<math>
* $c_n$분자와 분모를 다음과 같이 두자
+
\begin{array}{c|cccccccccc}
** <math>p_n</math> 1,3,7,17,41,99,239,577,1393,3363,8119
+
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
** <math>q_n</math> 1,2,5,12,29,70,169,408,985,2378
+
\hline
 +
c_n & 1 & \frac{3}{2} & \frac{7}{5} & \frac{17}{12} & \frac{41}{29} & \frac{99}{70} & \frac{239}{169} & \frac{577}{408} & \frac{1393}{985} & \frac{3363}{2378} \\
 +
\end{array}
 +
</math>
 +
* <math>c_n</math>분자 <math>p_n</math>와 분모 <math>q_n</math>로 이루어진 수열을 생각하자
 +
:<math>
 +
\begin{array}{c|cccccccccc}
 +
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 +
\hline
 +
p_n & 1 & 3 & 7 & 17 & 41 & 99 & 239 & 577 & 1393 & 3363 \\
 +
q_n & 1 & 2 & 5 & 12 & 29 & 70 & 169 & 408 & 985 & 2378 \\
 +
\end{array}
 +
</math>
 
* 다음이 성립한다
 
* 다음이 성립한다
** <math>p_n^2-2 q_n^2=(-1)^{n+1}</math>
+
** <math>p_n^2-2 q_n^2=(-1)^{n-1}</math>
 
** <math>
 
** <math>
 
\begin{vmatrix}
 
\begin{vmatrix}
 
  p_{n} & p_{n+1} \\
 
  p_{n} & p_{n+1} \\
 
  q_{n} & q_{n+1}
 
  q_{n} & q_{n+1}
\end{vmatrix}=(-1)^{n+1}
+
\end{vmatrix}=(-1)^{n-1}
 
</math>
 
</math>
 
** <math>p_{n+1}=2p_n+p_{n-1}, p_0=1, p_1=3</math>
 
** <math>p_{n+1}=2p_n+p_{n-1}, p_0=1, p_1=3</math>
 
** <math>q_{n+1}=2q_n+q_{n-1}, q_0=1, q_1=2</math>
 
** <math>q_{n+1}=2q_n+q_{n-1}, q_0=1, q_1=2</math>
 
+
* [[2의 제곱근(루트 2, 피타고라스 상수)]]
 +
===황금비===
 +
* 황금비의 연분수 전개는 <math>[1;1,1,1,\cdots]</math>, 즉 다음과 같이 주어진다
 +
:<math>\frac{1+\sqrt{5}}{2}=1+\cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \ddots}}}</math>
 +
* convergents <math>\{c_n\}_{n\geq 0}</math>는 다음과 같이 주어진다
 +
:<math>
 +
\begin{array}{c|cccccccccc}
 +
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 +
\hline
 +
c_n & 1 & 2 & \frac{3}{2} & \frac{5}{3} & \frac{8}{5} & \frac{13}{8} & \frac{21}{13} & \frac{34}{21} & \frac{55}{34} & \frac{89}{55} \\
 +
\end{array}
 +
</math>
 +
* <math>c_n</math>의 분자 <math>p_n</math>와 분모 <math>q_n</math>로 이루어진 수열을 생각하자
 +
:<math>
 +
\begin{array}{c|cccccccccc}
 +
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 +
\hline
 +
p_n & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 \\
 +
q_n & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 \\
 +
\end{array}
 +
</math>
 +
* 다음이 성립한다
 +
** <math>
 +
\begin{vmatrix}
 +
p_{n} & p_{n+1} \\
 +
q_{n} & q_{n+1}
 +
\end{vmatrix}=(-1)^{n-1}
 +
</math>
 +
** <math>p_{n+1}=p_n+p_{n-1}, p_0=1, p_1=2</math>
 +
** <math>q_{n+1}=q_n+q_{n-1}, q_0=1, q_1=1</math>
  
==역사==
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사 연표]]
 
 
 
 
 
 
 
  
 
==메모==
 
==메모==
  
 
+
  
 
* Math Overflow http://mathoverflow.net/search?q=
 
* Math Overflow http://mathoverflow.net/search?q=
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
54번째 줄: 102번째 줄:
 
* [[킨친 상수]]
 
* [[킨친 상수]]
 
* [[2의 제곱근(루트 2, 피타고라스 상수)]]
 
* [[2의 제곱근(루트 2, 피타고라스 상수)]]
 
+
* [[자렘바의 추측]]
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
60번째 줄: 108번째 줄:
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxaVhxcXc2U1hoMU0/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxaVhxcXc2U1hoMU0/edit
  
 +
 +
==관련논문==
 +
* Bengoechea, Paloma. ‘On a Theorem of Serret on Continued Fractions’. arXiv:1301.5944 [math], 24 January 2013. http://arxiv.org/abs/1301.5944.
  
  
 
 
 
[[분류:정수론]]
 
[[분류:정수론]]
 +
[[분류:연분수]]

2020년 12월 28일 (월) 03:44 기준 최신판

개요

  • 다음과 같은 형태로 주어지는 수를 연분수라 한다

\[a_0+\frac{b_1}{a_1+\frac{b_2}{a_2+\frac{b_3}{a_3+\frac{b_4}{a_4+\frac{b_5}{a_5+\frac{b_6}{a_6+\frac{b_7}{a_7+\frac{b_8}{a_8+\frac{b_9}{a_9+\frac{b_{10}}{a_{10}}}}}}}}}}}\]

  • 다음과 같은 경우를 단순연분수라 한다

\[ c=a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{a_3+\frac{1}{a_4+\frac{1}{a_5+\cdots}}}}} \]

  • 이를 \(c=[a_0;a_1,a_2,\cdots]\)로 표현한다
  • convergents \(c_n=[a_0;a_1,a_2,\cdots,a_n]\)를 정의
  • \(c_n\)의 분자 \(p_n\)와 분모 \(q_n\)로 이루어진 수열에 대하여 다음이 성립한다
    • \( \begin{vmatrix} p_{n} & p_{n+1} \\ q_{n} & q_{n+1} \end{vmatrix}=(-1)^{n+1} \)
    • \(p_{n+1}=a_{n+1}p_n+p_{n-1}\)
    • \(q_{n+1}=a_{n+1}q_n+q_{n-1}\)
  • \(p_n\)과 \(q_n\)에 대해서는 Continuant 항목을 참조


루트 2

  • 루트 2의 연분수 전개는 \([1;2,2,2,\cdots]\), 즉 다음과 같이 주어진다

\[\sqrt{2}=1+\cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \ddots}}}\]

  • convergents \(\{c_n\}_{n\geq 0}\)는 다음과 같이 주어진다

\[ \begin{array}{c|cccccccccc} n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline c_n & 1 & \frac{3}{2} & \frac{7}{5} & \frac{17}{12} & \frac{41}{29} & \frac{99}{70} & \frac{239}{169} & \frac{577}{408} & \frac{1393}{985} & \frac{3363}{2378} \\ \end{array} \]

  • \(c_n\)의 분자 \(p_n\)와 분모 \(q_n\)로 이루어진 수열을 생각하자

\[ \begin{array}{c|cccccccccc} n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline p_n & 1 & 3 & 7 & 17 & 41 & 99 & 239 & 577 & 1393 & 3363 \\ q_n & 1 & 2 & 5 & 12 & 29 & 70 & 169 & 408 & 985 & 2378 \\ \end{array} \]

  • 다음이 성립한다
    • \(p_n^2-2 q_n^2=(-1)^{n-1}\)
    • \( \begin{vmatrix} p_{n} & p_{n+1} \\ q_{n} & q_{n+1} \end{vmatrix}=(-1)^{n-1} \)
    • \(p_{n+1}=2p_n+p_{n-1}, p_0=1, p_1=3\)
    • \(q_{n+1}=2q_n+q_{n-1}, q_0=1, q_1=2\)
  • 2의 제곱근(루트 2, 피타고라스 상수)

황금비

  • 황금비의 연분수 전개는 \([1;1,1,1,\cdots]\), 즉 다음과 같이 주어진다

\[\frac{1+\sqrt{5}}{2}=1+\cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \ddots}}}\]

  • convergents \(\{c_n\}_{n\geq 0}\)는 다음과 같이 주어진다

\[ \begin{array}{c|cccccccccc} n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline c_n & 1 & 2 & \frac{3}{2} & \frac{5}{3} & \frac{8}{5} & \frac{13}{8} & \frac{21}{13} & \frac{34}{21} & \frac{55}{34} & \frac{89}{55} \\ \end{array} \]

  • \(c_n\)의 분자 \(p_n\)와 분모 \(q_n\)로 이루어진 수열을 생각하자

\[ \begin{array}{c|cccccccccc} n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline p_n & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 \\ q_n & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 \\ \end{array} \]

  • 다음이 성립한다
    • \( \begin{vmatrix} p_{n} & p_{n+1} \\ q_{n} & q_{n+1} \end{vmatrix}=(-1)^{n-1} \)
    • \(p_{n+1}=p_n+p_{n-1}, p_0=1, p_1=2\)
    • \(q_{n+1}=q_n+q_{n-1}, q_0=1, q_1=1\)


메모



관련된 항목들

매스매티카 파일 및 계산 리소스


관련논문